Transformers 4.37 中文文档(八十四)(1)

简介: Transformers 4.37 中文文档(八十四)


原文:huggingface.co/docs/transformers

Chinese-CLIP

原文链接:huggingface.co/docs/transformers/v4.37.2/en/model_doc/chinese_clip

概述

中文 CLIP 模型是由 An Yang、Junshu Pan、Junyang Lin、Rui Men、Yichang Zhang、Jingren Zhou、Chang Zhou 在中文 CLIP:中文对比视觉-语言预训练中提出的。中文 CLIP 是在大规模中文图像-文本对数据集上实现的 CLIP(Radford 等,2021)的一个实现。它能够执行跨模态检索,并且还可以作为视觉任务的视觉骨干,如零样本图像分类、开放域目标检测等。原始的中文 CLIP 代码在此链接上发布。

论文摘要如下:

CLIP(Radford  等,2021)的巨大成功推动了对视觉-语言对比学习的研究和应用。在这项工作中,我们构建了一个大规模的中文图像-文本对数据集,其中大部分数据来自公开可用的数据集,我们在新数据集上对中文  CLIP 模型进行了预训练。我们开发了 5 个不同大小的中文 CLIP 模型,参数范围从 7700 万到 9.58  亿。此外,我们提出了一种两阶段预训练方法,其中模型首先在图像编码器冻结的情况下进行训练,然后在优化所有参数的情况下进行训练,以实现增强的模型性能。我们的全面实验表明,中文  CLIP 在 MUGE、Flickr30K-CN 和 COCO-CN 的零样本学习和微调设置中可以实现最先进的性能,并且在 ELEVATER  基准测试(Li 等,2022)的评估中,它能够在零样本图像分类方面实现竞争性能。我们的代码、预训练模型和演示已发布。

中文 CLIP 模型由OFA-Sys贡献。

用法示例

下面的代码片段显示了如何计算图像和文本特征以及相似性:

>>> from PIL import Image
>>> import requests
>>> from transformers import ChineseCLIPProcessor, ChineseCLIPModel
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> processor = ChineseCLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # Squirtle, Bulbasaur, Charmander, Pikachu in English
>>> texts = ["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"]
>>> # compute image feature
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
>>> image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)  # normalize
>>> # compute text features
>>> inputs = processor(text=texts, padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
>>> text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)  # normalize
>>> # compute image-text similarity scores
>>> inputs = processor(text=texts, images=image, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1)  # probs: [[1.2686e-03, 5.4499e-02, 6.7968e-04, 9.4355e-01]]

目前,在🤗 Hub 上提供以下规模的预训练中文 CLIP 模型:

ChineseCLIPConfig

class transformers.ChineseCLIPConfig

<来源>

( text_config = None vision_config = None projection_dim = 512 logit_scale_init_value = 2.6592 **kwargs )

参数

  • text_configdict可选)— 用于初始化 ChineseCLIPTextConfig 的配置选项字典。
  • vision_configdict可选)— 用于初始化 ChineseCLIPVisionConfig 的配置选项字典。
  • projection_dimint可选,默认为 512)— 文本和视觉投影层的维度。
  • logit_scale_init_valuefloat可选,默认为 2.6592)— logit_scale参数的初始值。默认值根据原始 ChineseCLIP 实现使用。
  • kwargs可选)— 关键字参数的字典。

ChineseCLIPConfig 是用于存储 ChineseCLIPModel 配置的配置类。根据指定的参数实例化 Chinese-CLIP 模型,定义文本模型和视觉模型配置。使用默认值实例化配置将产生类似于 Chinese-CLIP OFA-Sys/chinese-clip-vit-base-patch16架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

>>> from transformers import ChineseCLIPConfig, ChineseCLIPModel
>>> # Initializing a ChineseCLIPConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
>>> configuration = ChineseCLIPConfig()
>>> # Initializing a ChineseCLIPModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
>>> model = ChineseCLIPModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a ChineseCLIPConfig from a ChineseCLIPTextConfig and a ChineseCLIPVisionConfig
>>> # Initializing a ChineseCLIPTextConfig and ChineseCLIPVisionConfig configuration
>>> config_text = ChineseCLIPTextConfig()
>>> config_vision = ChineseCLIPVisionConfig()
>>> config = ChineseCLIPConfig.from_text_vision_configs(config_text, config_vision)
from_text_vision_configs

< source >

( text_config: ChineseCLIPTextConfig vision_config: ChineseCLIPVisionConfig **kwargs )

从 Chinese-CLIP 文本模型配置和 Chinese-CLIP 视觉模型配置实例化一个 ChineseCLIPConfig(或派生类)。返回:ChineseCLIPConfig:配置对象的实例

ChineseCLIPTextConfig

class transformers.ChineseCLIPTextConfig

< source >

( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 initializer_factor = 1.0 layer_norm_eps = 1e-12 pad_token_id = 0 position_embedding_type = 'absolute' use_cache = True **kwargs )

参数

  • vocab_size (int, optional, defaults to 30522) — CHINESE_CLIP 模型的词汇量。定义了在调用 ChineseCLIPModel 时可以表示的不同标记数量。
  • hidden_size (int, optional, defaults to 768) — 编码器层和池化器层的维度。
  • num_hidden_layers (int, optional, defaults to 12) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, optional, defaults to 12) — Transformer 编码器中每个注意力层的注意力头数。
  • intermediate_size (int, optional, defaults to 3072) — Transformer 编码器中“中间”(通常称为前馈)层的维度。
  • hidden_act (str or Callable, optional, defaults to "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu""relu""silu""gelu_new"
  • hidden_dropout_prob (float, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, optional, defaults to 0.1) — 注意力概率的 dropout 比率。
  • max_position_embeddings (int, optional, defaults to 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • type_vocab_size (int, optional, defaults to 2) — 在调用 ChineseCLIPModel 时传递的token_type_ids的词汇量。
  • initializer_range (float, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • initializer_factor (float, optional, defaults to 1.0) — 用于初始化所有权重矩阵的因子(应保持为 1,用于内部初始化测试)。
  • layer_norm_eps (float, optional, defaults to 1e-12) — 层归一化层使用的 epsilon。
  • pad_token_id (int, optional, defaults to 0) — 填充标记 id。
  • position_embedding_type (str, optional, defaults to "absolute") — 位置嵌入的类型。选择"absolute"之一,"relative_key""relative_key_query"。对于位置嵌入,请使用"absolute"。有关"relative_key"的更多信息,请参考Self-Attention with Relative Position Representations (Shaw et al.)。有关"relative_key_query"的更多信息,请参考Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)中的Method 4
  • use_cache (bool, optional, defaults to True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在config.is_decoder=True时相关。

这是用于存储 ChineseCLIPModel 配置的配置类。根据指定的参数实例化一个 Chinese CLIP 模型,定义模型架构。使用默认值实例化配置将产生类似于 Chinese CLIP OFA-Sys/chinese-clip-vit-base-patch16架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

>>> from transformers import ChineseCLIPTextConfig, ChineseCLIPTextModel
>>> # Initializing a ChineseCLIPTextConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
>>> configuration = ChineseCLIPTextConfig()
>>> # Initializing a ChineseCLIPTextModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
>>> model = ChineseCLIPTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config

ChineseCLIPVisionConfig

class transformers.ChineseCLIPVisionConfig

<来源>

( hidden_size = 768 intermediate_size = 3072 projection_dim = 512 num_hidden_layers = 12 num_attention_heads = 12 num_channels = 3 image_size = 224 patch_size = 32 hidden_act = 'quick_gelu' layer_norm_eps = 1e-05 attention_dropout = 0.0 initializer_range = 0.02 initializer_factor = 1.0 **kwargs )

参数

  • hidden_size (int, optional, defaults to 768) — 编码器层和池化层的维度。
  • intermediate_size (int, optional, defaults to 3072) — Transformer 编码器中“中间”(即前馈)层的维度。
  • projection_dim (int, optional, defaults to 512) — 文本和视觉投影层的维度。
  • num_hidden_layers (int, optional, defaults to 12) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, optional, defaults to 12) — Transformer 编码器中每个注意力层的注意力头数量。
  • num_channels (int, optional, defaults to 3) — 输入通道数。
  • image_size (int, optional, defaults to 224) — 每个图像的大小(分辨率)。
  • patch_size (int, optional, defaults to 32) — 每个补丁的大小(分辨率)。
  • hidden_act (str or function, optional, defaults to "quick_gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu""relu""selu""gelu_new"以及"quick_gelu"
  • layer_norm_eps (float, optional, defaults to 1e-05) — 层归一化层使用的 epsilon。
  • attention_dropout (float, optional, defaults to 0.0) — 注意力概率的 dropout 比率。
  • initializer_range (float, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • initializer_factor (float, optional, defaults to 1.0) — 用于初始化所有权重矩阵的因子(应保持为 1,仅用于初始化测试)。

这是一个配置类,用于存储 ChineseCLIPModel 的配置。它用于根据指定的参数实例化一个 ChineseCLIP 模型,定义模型架构。使用默认值实例化配置将产生类似于 ChineseCLIP OFA-Sys/chinese-clip-vit-base-patch16架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

>>> from transformers import ChineseCLIPVisionConfig, ChineseCLIPVisionModel
>>> # Initializing a ChineseCLIPVisionConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
>>> configuration = ChineseCLIPVisionConfig()
>>> # Initializing a ChineseCLIPVisionModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
>>> model = ChineseCLIPVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config

ChineseCLIPImageProcessor

class transformers.ChineseCLIPImageProcessor

<来源>

( do_resize: bool = True size: Dict = None resample: Resampling = <Resampling.BICUBIC: 3> do_center_crop: bool = True crop_size: Dict = None do_rescale: bool = True rescale_factor: Union = 0.00392156862745098 do_normalize: bool = True image_mean: Union = None image_std: Union = None do_convert_rgb: bool = True **kwargs )

参数

  • do_resize (bool, optional, 默认为 True) — 是否将图像的(高度,宽度)尺寸调整为指定的size。可以被preprocess方法中的do_resize覆盖。
  • size (Dict[str, int] optional, 默认为 {"shortest_edge" -- 224}): 调整大小后的图像尺寸。图像的最短边被调整为 size[“shortest_edge”],最长边被调整以保持输入的长宽比。可以被preprocess方法中的size覆盖。
  • resample (PILImageResampling, optional, 默认为 Resampling.BICUBIC) — 调整图像大小时要使用的重采样滤波器。可以被preprocess方法中的resample覆盖。
  • do_center_crop (bool, optional, 默认为 True) — 是否将图像居中裁剪到指定的crop_size。可以被preprocess方法中的do_center_crop覆盖。
  • crop_size (Dict[str, int] optional, 默认为 224) — 应用center_crop后输出图像的大小。可以被preprocess方法中的crop_size覆盖。
  • do_rescale (bool, optional, 默认为 True) — 是否按指定比例因子rescale_factor重新缩放图像。可以被preprocess方法中的do_rescale覆盖。
  • rescale_factor (intfloat, optional, 默认为 1/255) — 用于重新缩放图像的比例因子。可以被preprocess方法中的rescale_factor覆盖。
  • do_normalize (bool, optional, defaults to True) — 是否对图像进行归一化。可以被preprocess方法中的do_normalize覆盖。
  • image_mean (floatList[float], optional, 默认为 IMAGENET_STANDARD_MEAN) — 如果对图像进行归一化,则使用的均值。这是一个浮点数或与图像通道数相同长度的浮点数列表。可以被preprocess方法中的image_mean参数覆盖。
  • image_std (floatList[float], optional, 默认为 IMAGENET_STANDARD_STD) — 如果对图像进行归一化,则使用的标准差。这是一个浮点数或与图像通道数相同长度的浮点数列表。可以被preprocess方法中的image_std参数覆盖。可以被preprocess方法中的image_std参数覆盖。
  • do_convert_rgb (bool, optional, 默认为 True) — 是否将图像转换为 RGB。

构建一个 Chinese-CLIP 图像处理器。

preprocess

<来源>

( images: Union do_resize: bool = None size: Dict = None resample: Resampling = None do_center_crop: bool = None crop_size: int = None do_rescale: bool = None rescale_factor: float = None do_normalize: bool = None image_mean: Union = None image_std: Union = None do_convert_rgb: bool = None return_tensors: Union = None data_format: Optional = <ChannelDimension.FIRST: 'channels_first'> input_data_format: Union = None **kwargs )

参数

  • images (ImageInput) — 要预处理的图像。期望单个或批量的像素值范围为 0 到 255 的图像。如果传入像素值在 0 到 1 之间的图像,请设置do_rescale=False
  • do_resize (bool, optional, 默认为 self.do_resize) — 是否调整图像大小。
  • size (Dict[str, int], optional, 默认为 self.size) — 调整大小后的图像尺寸。图像的最短边被调整为 size[“shortest_edge”],最长边被调整以保持输入的长宽比。
  • resample (int, optional, 默认为 self.resample) — 如果调整图像大小,则要使用的重采样滤波器。这可以是枚举 PILImageResampling 之一。仅在 do_resize 设置为 True 时有效。
  • do_center_crop (bool, optional, 默认为 self.do_center_crop) — 是否对图像进行中心裁剪。
  • crop_size (Dict[str, int], optional, 默认为 self.crop_size) — 中心裁剪的尺寸。仅在 do_center_crop 设置为 True 时有效。
  • do_rescale (bool, optional, 默认为 self.do_rescale) — 是否重新缩放图像。
  • rescale_factor (float, optional, 默认为 self.rescale_factor) — 如果 do_rescale 设置为 True,则用于重新缩放图像的重新缩放因子。
  • do_normalize (bool, optional, 默认为 self.do_normalize) — 是否对图像进行归一化。
  • image_mean (floatList[float], optional, 默认为 self.image_mean) — 用于归一化的图像均值。仅在 do_normalize 设置为 True 时有效。
  • image_std (floatList[float], optional, 默认为 self.image_std) — 用于归一化的图像标准差。仅在 do_normalize 设置为 True 时有效。
  • do_convert_rgb (bool, optional, 默认为 self.do_convert_rgb) — 是否将图像转换为 RGB。
  • return_tensors (strTensorType, optional) — 要返回的张量类型。可以是以下之一:
  • 未设置: 返回一个 np.ndarray 列表。
  • TensorType.TENSORFLOW'tf': 返回类型为 tf.Tensor 的批处理。
  • TensorType.PYTORCH'pt': 返回类型为 torch.Tensor 的批处理。
  • TensorType.NUMPY'np': 返回类型为 np.ndarray 的批处理。
  • TensorType.JAX'jax': 返回类型为 jax.numpy.ndarray 的批处理。
  • data_format (ChannelDimensionstr, optional, 默认为 ChannelDimension.FIRST) — 输出图像的通道维度格式。可以是以下之一:
  • "channels_first"ChannelDimension.FIRST: 图像以 (通道数, 高度, 宽度) 格式。
  • "channels_last"ChannelDimension.LAST: 图像以 (高度, 宽度, 通道数) 格式。
  • 未设置: 使用输入图像的通道维度格式。
  • input_data_format (ChannelDimensionstr, optional) — 输入图像的通道维度格式。如果未设置,则从输入图像中推断通道维度格式。可以是以下之一:
  • "channels_first"ChannelDimension.FIRST: 图像以 (通道数, 高度, 宽度) 格式。
  • "channels_last"ChannelDimension.LAST: 图像以 (高度, 宽度, 通道数) 格式。
  • "none"ChannelDimension.NONE: 图像以 (高度, 宽度) 格式。

预处理一个图像或一批图像。

ChineseCLIPFeatureExtractor

class transformers.ChineseCLIPFeatureExtractor

< source >

( *args **kwargs )

ChineseCLIPProcessor

class transformers.ChineseCLIPProcessor

< source >

( image_processor = None tokenizer = None **kwargs )

参数

  • image_processor (ChineseCLIPImageProcessor, optional) — 图像处理器是必需的输入。
  • tokenizer (BertTokenizerFast, optional) — 分词器是必需的输入。

构建一个包装了中文-CLIP 图像处理器和中文-CLIP 分词器的中文-CLIP 处理器。

ChineseCLIPProcessor 提供了 ChineseCLIPImageProcessor 和 BertTokenizerFast 的所有功能。查看__call__()和 decode()获取更多信息。

批量解码

<来源>

( *args **kwargs )

这个方法将其所有参数转发给 BertTokenizerFast 的 batch_decode()。请参考此方法的文档字符串以获取更多信息。

解码

<来源>

( *args **kwargs )

这个方法将其所有参数转发给 BertTokenizerFast 的 decode()。请参考此方法的文档字符串以获取更多信息。

ChineseCLIPModel

class transformers.ChineseCLIPModel

<来源>

( config: ChineseCLIPConfig )

参数

  • config (ChineseCLIPConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

这个模型是一个 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

前向

<来源>

( input_ids: Optional = None pixel_values: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None return_loss: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.chinese_clip.modeling_chinese_clip.ChineseCLIPOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。
    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。
    什么是输入 ID?
  • attention_mask (torch.Tensor,形状为(batch_size, sequence_length)可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
  • 对于未被masked的标记,值为 1。
  • 对于被masked的标记,值为 0。
  • 什么是注意力掩码?
  • token_type_ids (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]之间:
  • 0 对应于句子 A标记,
  • 1 对应于句子 B标记。
  • 什么是标记类型 ID?
  • position_ids (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
    什么是位置 ID?
  • pixel_values (torch.FloatTensor,形状为(batch_size, num_channels, height, width)) — 像素值。默认情况下将忽略填充。可以使用 AutoImageProcessor 获取像素值。有关详细信息,请参阅 ChineseCLIPImageProcessor.call()。
  • return_loss (bool, 可选) — 是否返回对比损失。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.models.chinese_clip.modeling_chinese_clip.ChineseCLIPOutputtuple(torch.FloatTensor)

一个transformers.models.chinese_clip.modeling_chinese_clip.ChineseCLIPOutput或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时),包括根据配置()和输入而异的各种元素。

  • loss (torch.FloatTensor,形状为(1,), 可选, 当return_lossTrue时返回) — 图像-文本相似性的对比损失。
  • logits_per_image:(torch.FloatTensor,形状为(image_batch_size, text_batch_size)) — image_embedstext_embeds之间的缩放点积分数。这代表了图像-文本相似性分数。
  • logits_per_text:(torch.FloatTensor,形状为(text_batch_size, image_batch_size)) — text_embedsimage_embeds之间的缩放点积分数。这代表了文本-图像相似性分数。
  • text_embeds(torch.FloatTensor,形状为(batch_size, output_dim) — 通过将投影层应用于 ChineseCLIPTextModel 的汇聚输出获得的文本嵌入。
  • image_embeds(torch.FloatTensor,形状为(batch_size, output_dim) — 通过将投影层应用于 ChineseCLIPVisionModel 的汇聚输出获得的图像嵌入。
  • text_model_output(BaseModelOutputWithPoolingAndCrossAttentions): ChineseCLIPTextModel 的输出。
  • vision_model_output(BaseModelOutputWithPoolingAndCrossAttentions): ChineseCLIPVisionModel 的输出。

ChineseCLIPModel 的前向方法,覆盖__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, ChineseCLIPModel
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], images=image, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1)  # we can take the softmax to get the label probabilities
get_text_features

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';text_features (torch.FloatTensor of shape (batch_size, output_dim)

参数

  • input_ids (torch.LongTensor,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    索引可以使用 AutoTokenizer 获取。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor,形状为(batch_size, sequence_length)optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]中:
  • 1 表示标记未被掩盖
  • 0 表示标记被掩盖
  • 什么是注意力掩码?
  • token_type_ids (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]中:
  • 0 对应于句子 A的标记,
  • 1 对应于句子 B的标记。
  • 什么是标记类型 ID?
  • position_ids (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
    什么是位置 ID?
  • head_mask (torch.FloatTensor,形状为(num_heads,)(num_layers, num_heads)optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]中:
  • 1 表示头部未被掩盖
  • 0 表示头部被掩盖
  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

text_features (torch.FloatTensor,形状为(batch_size, output_dim)

通过将投影层应用于 Text-Transformer 的最终[CLS]隐藏状态获得的文本嵌入。

ChineseCLIPModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, ChineseCLIPModel
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> tokenizer = AutoTokenizer.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> inputs = tokenizer(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
>>> text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
get_image_features

< source >

( pixel_values: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';image_features (torch.FloatTensor of shape (batch_size, output_dim)

参数

  • pixel_values (torch.FloatTensor,形状为(batch_size, num_channels, height, width)) — 像素值。默认情况下将忽略填充。可以使用 AutoImageProcessor 获取像素值。有关详细信息,请参见 ChineseCLIPImageProcessor.call()。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请查看返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

image_features (torch.FloatTensor,形状为 (batch_size, output_dim))

通过将投影层应用于 Vision-Transformer 的最终 [CLS] 隐藏状态获得的图像嵌入。

ChineseCLIPModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, ChineseCLIPModel
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
>>> image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)


Transformers 4.37 中文文档(八十四)(2)https://developer.aliyun.com/article/1563255

相关文章
|
4月前
|
PyTorch 算法框架/工具 索引
Transformers 4.37 中文文档(八十四)(3)
Transformers 4.37 中文文档(八十四)
123 3
|
4月前
|
PyTorch 算法框架/工具 异构计算
Transformers 4.37 中文文档(八十四)(5)
Transformers 4.37 中文文档(八十四)
36 3
|
4月前
|
PyTorch TensorFlow API
Transformers 4.37 中文文档(八十四)(4)
Transformers 4.37 中文文档(八十四)
108 4
|
4月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(八十四)(2)
Transformers 4.37 中文文档(八十四)
56 3
|
4月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(八十三)(5)
Transformers 4.37 中文文档(八十三)
24 4
|
4月前
|
PyTorch 算法框架/工具 开发工具
Transformers 4.37 中文文档(八十六)(5)
Transformers 4.37 中文文档(八十六)
54 4
|
4月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(八十三)(1)
Transformers 4.37 中文文档(八十三)
41 3
|
4月前
|
存储 PyTorch 算法框架/工具
Transformers 4.37 中文文档(八十三)(2)
Transformers 4.37 中文文档(八十三)
31 3
|
4月前
|
存储 PyTorch 算法框架/工具
Transformers 4.37 中文文档(八十七)(5)
Transformers 4.37 中文文档(八十七)
35 3
|
4月前
|
存储 PyTorch 测试技术
Transformers 4.37 中文文档(八十三)(4)
Transformers 4.37 中文文档(八十三)
29 2