语言≠思维,大模型学不了推理:一篇Nature让AI社区炸锅了

简介: 【7月更文挑战第3天】新研究表明语言和思维是分离的,引发AI社区激烈讨论。论文通过fMRI实验显示语言处理与思维在大脑中独立,即使无语言人们仍能推理。这质疑了AI仅通过语言学习高级智能的可能性,暗示应更关注模拟人类思维。[[1](https://www.nature.com/articles/s41586-024-07522-w)]

最近,一篇发表在《自然》杂志上的论文在人工智能(AI)社区引起了轩然大波。这篇论文的标题是《Language is primarily a tool for communication rather than thought》,它对语言和思维的关系进行了深入的研究和探讨。

该论文的主要观点是,语言的主要功能是交流,而不是思维。这一观点与传统的认知科学理论有所不同,后者认为语言在人类思维中扮演着重要的角色。然而,这篇论文的作者通过大量的实验和研究,提出了一个令人信服的论点,即语言和思维是两个独立的系统,它们之间并没有直接的联系。

首先,让我们来看看这篇论文的实验设计。作者使用了功能性磁共振成像(fMRI)技术,对参与实验的志愿者的大脑活动进行了实时监测。他们发现,当志愿者在进行语言任务时,与语言相关的大脑区域会变得活跃,而与思维相关的区域则相对安静。这表明语言和思维在大脑中是分开处理的。

此外,作者还进行了一项有趣的实验,他们让志愿者在没有语言的情况下进行推理任务。结果发现,志愿者仍然能够完成这些任务,并且他们的大脑活动与有语言的情况下并没有明显的差异。这进一步支持了语言和思维是两个独立系统的观点。

然而,这篇论文的观点也并非没有争议。一些人认为,语言对思维的影响是不可忽视的。他们认为,语言为我们提供了一种组织和表达思想的方式,它帮助我们将抽象的概念转化为具体的语言符号,从而促进了思维的发展。

此外,还有一些人担心这篇论文的观点可能会对人工智能的发展产生负面影响。他们认为,如果语言和思维是两个独立的系统,那么人工智能就无法通过学习语言来获得真正的智能。这将意味着我们需要寻找其他的方法来开发智能机器。

然而,这篇论文的作者并不认同这些观点。他们认为,尽管语言和思维是两个独立的系统,但这并不意味着语言对思维没有影响。相反,他们相信语言是一种强大的工具,它能够帮助我们更好地组织和表达思想。

此外,他们还认为这篇论文的观点对人工智能的发展有着重要的启示。他们认为,人工智能应该更加注重学习和模拟人类的思维过程,而不仅仅是学习语言。这将有助于开发出更智能、更灵活的机器。

论文链接:https://www.nature.com/articles/s41586-024-07522-w

目录
相关文章
|
1月前
|
人工智能 并行计算 安全
从零到一,打造专属AI王国!大模型私有化部署全攻略,手把手教你搭建、优化与安全设置
【10月更文挑战第24天】本文详细介绍从零开始的大模型私有化部署流程,涵盖需求分析、环境搭建、模型准备、模型部署、性能优化和安全设置六个关键步骤,并提供相应的示例代码,确保企业能够高效、安全地将大型AI模型部署在本地或私有云上。
289 7
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
17天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
74 3
|
26天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
102 2
|
5天前
|
人工智能 自然语言处理 算法
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
126 64
|
4天前
|
机器学习/深度学习 人工智能 语音技术
Fugatto:英伟达推出的多功能AI音频生成模型
Fugatto是由英伟达推出的多功能AI音频生成模型,能够根据文本提示生成音频或视频,并修改现有音频文件。该模型基于增强型的Transformer模型,支持复杂的组合指令,具有强大的音频生成与转换能力,广泛应用于音乐创作、声音设计、语音合成等领域。
42 1
Fugatto:英伟达推出的多功能AI音频生成模型
|
19天前
|
人工智能 弹性计算 Serverless
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
本文介绍了零售业中“人—货—场”三要素的变化,指出传统营销方式已难以吸引消费者。现代消费者更注重个性化体验,因此需要提供超出预期的内容。文章还介绍了阿里云基于函数计算的AI大模型,特别是Stable Diffusion WebUI,帮助非专业人士轻松制作高质量的促销海报。通过详细的部署步骤和实践经验,展示了该方案在实际生产环境中的应用价值。
54 6
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
|
1月前
|
存储 人工智能 数据可视化
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
在数字化时代,企业面临海量客户对话数据处理的挑战。阿里云推出的“AI大模型助力客户对话分析”解决方案,通过先进的AI技术和智能化分析,帮助企业精准识别客户意图、发现服务质量问题,并生成详尽的分析报告和可视化数据。该方案采用按需付费模式,有效降低企业运营成本,提升客服质量和销售转化率。
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
|
16天前
|
人工智能 新制造 芯片
2024年中国AI大模型产业发展报告解读
2024年,中国AI大模型产业迎来蓬勃发展,成为科技和经济增长的新引擎。本文解读《2024年中国AI大模型产业发展报告》,探讨产业发展背景、现状、挑战与未来趋势。技术进步显著,应用广泛,但算力瓶颈、资源消耗和训练数据不足仍是主要挑战。未来,云侧与端侧模型分化、通用与专用模型并存、大模型开源和芯片技术升级将是主要发展方向。
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。