北大推出全新机器人多模态大模型!面向通用和机器人场景的高效推理和操作

简介: 【6月更文挑战第29天】北京大学研发的RoboMamba是新型机器人多模态大模型,融合Mamba SSM的高效推理与视觉编码器,提升复杂任务处理能力。通过微调策略,仅用少量参数即可快速习得操作技能,实现在通用及机器人场景的高效运行,推理速度提升7倍。尽管面临泛化和可解释性挑战,RoboMamba展示了多模态模型的新潜力。[论文链接:](https://arxiv.org/abs/2406.04339)

在机器人领域,如何让机器人能够像人类一样理解视觉场景并执行相应的操作,一直是一个重要的研究方向。然而,现有的机器人多模态大模型(MLLM)在处理复杂任务时,往往存在推理能力不足和计算成本高昂的问题。为了解决这些问题,北京大学的研究团队提出了一种名为RoboMamba的新型机器人多模态大模型。

RoboMamba的设计灵感来源于一种名为Mamba的状态空间模型(SSM)。Mamba模型在非平凡序列建模方面表现出色,并且具有线性的推理复杂度,这意味着它的计算效率非常高。RoboMamba通过将Mamba模型与视觉编码器集成在一起,实现了对视觉数据和语言嵌入的对齐,从而赋予了模型视觉常识和机器人相关的推理能力。

为了进一步增强RoboMamba的操作预测能力,研究团队探索了一种高效的微调策略,即在模型中添加一个简单的策略头部。他们发现,当RoboMamba具备足够的推理能力时,只需要对模型进行少量的微调(仅占模型参数的0.1%),就可以在短短20分钟内获得出色的操作技能。

在实验中,RoboMamba在通用和机器人场景下的评估基准上表现出了出色的推理能力。此外,它在模拟和真实世界环境中的操作预测任务中也取得了令人印象深刻的结果,并且推理速度比现有的机器人多模态大模型快了7倍。

RoboMamba的优势在于它结合了Mamba模型的高效性和视觉编码器的多模态性,从而实现了高效的推理和操作预测。然而,RoboMamba仍然面临一些挑战,例如如何在更复杂的任务和环境中进行泛化,以及如何进一步提高模型的可解释性和可控性。

论文链接:https://arxiv.org/abs/2406.04339

目录
打赏
0
1
1
0
391
分享
相关文章
AstrBot:轻松将大模型接入QQ、微信等消息平台,打造多功能AI聊天机器人的开发框架,附详细教程
AstrBot 是一个开源的多平台聊天机器人及开发框架,支持多种大语言模型和消息平台,具备多轮对话、语音转文字等功能。
2596 15
AstrBot:轻松将大模型接入QQ、微信等消息平台,打造多功能AI聊天机器人的开发框架,附详细教程
Magma:微软放大招!新型多模态AI能看懂视频+浏览网页+UI交互+控制机器人,数字世界到物理现实无缝衔接
Magma 是微软研究院开发的多模态AI基础模型,结合语言、空间和时间智能,能够处理图像、视频和文本等多模态输入,适用于UI导航、机器人操作和复杂任务规划。
45 2
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
Seer是由上海AI实验室与北大等机构联合推出的端到端操作模型,结合视觉预测与动作执行,显著提升机器人任务成功率。
76 20
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
Cosmos:英伟达生成式世界基础模型平台,加速自动驾驶与机器人开发
Cosmos 是英伟达推出的生成式世界基础模型平台,旨在加速物理人工智能系统的发展,特别是在自动驾驶和机器人领域。
215 15
Cosmos:英伟达生成式世界基础模型平台,加速自动驾驶与机器人开发
基于的Qwen模型的智能客服Discord机器人,使用🐫 CAMEL、SambaNova、Firecrawl和Qdrant实现RAG Agent
基于Qwen模型的智能客服Discord机器人,使用CAMEL、SambaNova、Firecrawl和Qdrant实现RAG Agent。构建了一个能够处理复杂问题并能进行快速响应的强大聊天机器人。该机器人可在Discord平台上运行,支持实时对话和语义搜索,提供准确、全面的回答。项目包含详细的安装步骤、代码示例及集成指南,适合开发者快速上手。
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
RDT(Robotics Diffusion Transformer)是由清华大学AI研究院TSAIL团队推出的全球最大的双臂机器人操作任务扩散基础模型。RDT具备十亿参数量,能够在无需人类操控的情况下自主完成复杂任务,如调酒和遛狗。
182 22
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
303 64
Jim Fan全华人团队HOVER问世,1.5M小模型让机器人获潜意识!
在机器人技术领域,人形机器人的全身控制一直极具挑战。传统方法为不同任务(如导航、移动操作等)单独训练控制策略,限制了策略的可转移性。Jim Fan团队提出HOVER框架,通过全身运动模仿作为共同抽象,整合多种控制模式,实现无缝过渡,显著提升控制效率和灵活性。HOVER不仅为人形机器人应用带来巨大潜力,也为机器人技术发展提供新思路。论文地址:https://arxiv.org/abs/2410.21229
73 23
EMMA-X:新加坡科技设计大学推出具身多模态动作模型,使夹爪机器人具备空间推理和任务规划能力
EMMA-X是由新加坡科技设计大学推出的具身多模态动作模型,具备70亿参数,通过在链式思维推理数据上微调OpenVLA创建。该模型结合层次化的具身数据集,增强空间推理和任务规划能力。
123 3
EMMA-X:新加坡科技设计大学推出具身多模态动作模型,使夹爪机器人具备空间推理和任务规划能力
NeurIPS 2024:机器人操纵世界模型来了,成功率超过谷歌RT-1 26.6%
PIVOT-R是一种新型世界模型,专注于预测与任务相关的路点,以提高语言引导的机器人操作的性能和效率。该模型由路点感知世界模型(WAWM)和轻量级动作预测模块组成,辅以异步分层执行器(AHE),在SeaWave基准测试中表现优异,平均相对改进达19.45%,执行效率提高28倍。
86 26

热门文章

最新文章