【Python实战】Python多线程批量采集图片

简介: 【Python实战】Python多线程批量采集图片

环境使用

  • python 3.9
  • pycharm

模块使用

  • requests

模块介绍

  • requests

       requests是一个很实用的Python HTTP客户端库,爬虫和测试服务器响应数据时经常会用到,requests是Python语言的第三方的库,专门用于发送HTTP请求,使用起来比urllib简洁很多。

  • parsel

       parsel是一个python的第三方库,相当于css选择器+xpath+re。

parsel由scrapy团队开发,是将scrapy中的parsel独立抽取出来的,可以轻松解析html,xml内容,获取需要的数据。

相比于BeautifulSoup,xpath,parsel效率更高,使用更简单。

  • re

       re模块是python独有的匹配字符串的模块,该模块中提供的很多功能是基于正则表达式实现的,而正则表达式是对字符串进行模糊匹配,提取自己需要的字符串部分,他对所有的语言都通用。

  • os

       os 就是 “operating system” 的缩写,顾名思义,os模块提供的就是各种 Python 程序与操作系统进行交互的接口。通过使用 os 模块,一方面可以方便地与操作系统进行交互,另一方面也可以极大增强代码的可移植性。

  • csv

       它是一种文件格式,一般也被叫做逗号分隔值文件,可以使用 Excel 软件或者文本文档打开 。其中数据字段用半角逗号间隔(也可以使用其它字符),使用 Excel 打开时,逗号会被转换为分隔符。csv 文件是以纯文本形式存储了表格数据,并且在兼容各个操作系统。

模块安装问题:

  • 如果安装python第三方模块:

win + R 输入 cmd 点击确定, 输入安装命令 pip install 模块名 (pip install requests) 回车

在pycharm中点击Terminal(终端) 输入安装命令

  • 安装失败原因:
  • 失败一: pip 不是内部命令

               解决方法: 设置环境变量

  • 失败二: 出现大量报红 (read time out)

               解决方法: 因为是网络链接超时, 需要切换镜像源

 

    清华:https://pypi.tuna.tsinghua.edu.cn/simple
    阿里云:https://mirrors.aliyun.com/pypi/simple/
    中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
    华中理工大学:https://pypi.hustunique.com/
    山东理工大学:https://pypi.sdutlinux.org/
    豆瓣:https://pypi.douban.com/simple/
    例如:pip3 install -i https://pypi.doubanio.com/simple/ 模块名
  • 失败三: cmd里面显示已经安装过了, 或者安装成功了, 但是在pycharm里面还是无法导入

               解决方法: 可能安装了多个python版本 (anaconda 或者 python 安装一个即可) 卸载一个就好,或者你pycharm里面python解释器没有设置好。

代码实现

什么是代理ip池?

       通俗地比喻一下,它就是一个池子,里面装了很多代理ip。它有如下的行为特征:

  1. 池子里的ip是有生命周期的,它们将被定期验证,其中失效的将被从池子里面剔除。
  2. 池子里的ip是有补充渠道的,会有新的代理ip不断被加入池子中。
  3. 池子中的代理ip是可以被随机取出的。

       这样,代理池中始终有多个不断更换的、有效的代理ip,且我们可以随机从池子中取出代理ip,然后让爬虫程序使用代理ip访问目标网站,就可以避免爬虫被ban的情况。

如何使用呢?

import requests
 
f = open('IP.txt',"r")
 
file = f.readline
 
item = []
 
for proxies in file:
 
    proxies =eval(proxies.replace('\',''))
    item.append(proxies)
proxies = random.choice(item)
response = requests.get(url=url,headers=headers,proxies=proxies)
print(response)

我们这里先是把IP保存到了一个文件里面,我们在请求的时候加入proxies参数即可,这里的url就填我们要请求的网址。

批量采集

接下来,我们就进入到我们的正式学习中,我们今天请求的是某大学网站,由于涉及到隐私,网址不发了,这里教一个思路,其他网站也是一样的。

单线程

我们先试试单线程采集80张图片需要多少秒?

import re
import requests
import datetime
urls = []
 
startime = datetime.datetime.now()
 
def download(url):
    name = re.findall('(\d+).jpg',url)[0]
    img_content = requests.get(url=url).content
    with open('img\\' +name+'.jpeg', mode='wb') as f:
        f.write(img_content)
 
for i in range(1,80):
    url = f"http://**********/student/{i}.jpg"
    urls.append(url)
for url in urls:
    download(url)
 
endtime = datetime.datetime.now()
print((endtime-startime).seconds)

我们这里就是把我们所有要下载的地址遍历到urls里面去,然后执行下载图片函数,我这里用时28秒,我们看看多线程多快。

多线程

我们这里加上多线程,多线程的数量取决于你的电脑性能,话不多说,直接上代码。

from concurrent.futures import ThreadPoolExecutor
import re
import requests
import datetime
urls = []
 
startime = datetime.datetime.now()
 
def download(url):
    name = re.findall('(\d+).jpg',url)[0]
    img_content = requests.get(url=url).content
    with open('img\\' +name+'.jpeg', mode='wb') as f:
        f.write(img_content)
 
for i in range(1,80):
    url = f"http://**********/student/{i}.jpg"
    urls.append(url)
with ThreadPoolExecutor(max_workers=10) as executor:
    for url in urls:
        executor.submit(download,url)
 
endtime = datetime.datetime.now()
print((endtime-startime).seconds)

我们这里开了10个线程,下载完80张图片,只要3s,提升了很快,当我们的图片很多的时候,我们多线程的优势越来越明显。

总结

有的网站回限制IP,所以,我们就要用到IP代理池,本文就到这里了。


相关文章
|
1月前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
|
13天前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
25天前
|
Java Unix 调度
python多线程!
本文介绍了线程的基本概念、多线程技术、线程的创建与管理、线程间的通信与同步机制,以及线程池和队列模块的使用。文章详细讲解了如何使用 `_thread` 和 `threading` 模块创建和管理线程,介绍了线程锁 `Lock` 的作用和使用方法,解决了多线程环境下的数据共享问题。此外,还介绍了 `Timer` 定时器和 `ThreadPoolExecutor` 线程池的使用,最后通过一个具体的案例展示了如何使用多线程爬取电影票房数据。文章还对比了进程和线程的优缺点,并讨论了计算密集型和IO密集型任务的适用场景。
47 4
|
8天前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
40 0
|
6月前
|
数据安全/隐私保护 Python
Python3给图片添加水印
Python3给图片添加水印
99 1
|
数据采集 分布式计算 搜索推荐
使用Python实现网页中图片的批量下载和水印添加保存
使用Python实现网页中图片的批量下载和水印添加保存
|
6月前
|
数据安全/隐私保护 Python
python 图片打水印 透明图片合并
python 图片打水印 透明图片合并
51 1
|
6月前
|
数据安全/隐私保护 计算机视觉 Python
如何使用Python给图片添加水印
如何使用Python给图片添加水印
115 0
|
6月前
|
数据安全/隐私保护 Python
python怎么使用Pillow库来添加图片水印
python怎么使用Pillow库来添加图片水印
91 0
|
数据安全/隐私保护 计算机视觉 Python
Python批量图片去水印,提高工作效率
Python批量图片去水印,提高工作效率
301 0
下一篇
无影云桌面