仓库选址问题【数学规划的应用(含代码)】阿里达院MindOpt

简介: 使用阿里云MindOpt工具,文章展示了如何解决仓库选址的数学规划问题。该问题涉及构建工厂以供应多个商店,考虑因素包括建设成本、库存成本、运输成本和需求量。MindOpt是一个优化求解器,能处理大规模数据的数学规划问题。通过声明集合、参数、变量、目标函数和约束条件,构建模型并求解,以最小化总成本。文中还提到了不同行业的应用场景,如农业、制造业、零售业和电商,并提供了视频讲解和代码示例。

本文主要讲述使用MindOpt工具优化仓库选址的数学规划问题。

视频讲解👈👈👈👈👈👈👈👈👈

一、案例场景

image.png

仓库选址问题在现代物流和供应链管理中具有重要的应用。因为仓库的位置直接影响到货物的运输成本、交货时间和库存量等因素。

涉及的行业有:

农业的农产品的输出和分销需要适当的仓储设备,尤其对于易腐烂的农产品,像水果、蔬菜等等。在制造业中,为存放一些原料、半成品或成品,制造业需在生产基地附近或靠近市场的地方建立仓库。

零售业的零售商通常需要在城市中心或人口密集区域附近设计仓库,以便商品的快速配送。

电子商务食品行业以及医药行业等应用非常广泛。

通常考虑以下因素:运输成本,考虑与供应商和消费市场的距离;地理位置、土地成本等等。

二、数学规划

仓库选址问题也可以使用数学规划的方法。数学规划是一种数学优化方法,主要是寻找变量的取值在特定的约束情况下使我们的决策目标得到一个最大或最小值的决策。常见规划方法有线性规划、整数规划还有非线性规划。

工具:

MindOpt优化求解器:帮我们求解大规模数据的数学规划问题。

三、问题描述

某公司有很多家商店,要建造多个工厂为商店供货。不同工厂库存容量和建设成本不同,每个商店的需求和每个工厂向商店运输商品的成本也不同。如何选择最优的工厂建造方案和供货方案使得总成本最低?

image.png

这个例题主要考虑了以下四点因素:

一是仓库建设成本,包括土地成本、建筑成本,以及设备成本等。在实际应用中,这个成本因素通常是已知的。因为仓库建设成本比较稳定,所以通过市场价格或预算确定。

二是库存成本,是在仓库中维护和管理存货所需成本,成本因素包括储存成本、订单处理成本,还有库存租金、保险费用等。在实际的应用中,需要调查和分析得出成本因素,以便在模型中考虑成本的影响。

三是运输成本,将货物从仓库运输到客户所需的成本,因素通常有运输距离、运输方式、运输时间、运输成本等,通常经过一定调查和分析之后得出,可通过运输网络模型、运输成本数据库或者实地考察等方式确定。

四是交通需求,是客户对货物的需求量,这个数据可通过客户的订单量、历史数据等方式获取。在实际的应用中,需要考虑客户对不同商户的需求量,以便在模型中考虑到对总成本的影响。

代码解析

使用工具:

声明集合、参数

image.png

声明的集合:「PLANTS」是工厂的类型,「STORES」是拥有的商店数量。

image.png

声明的参数是每个工厂建造的成本和每个工厂的库存容量。

声明变量

image.png

在这个问题中,可以控制的决策变量是建造什么类型的工厂和由哪个工厂运输商品给哪个商店。所以声明两个二进制的决策变量,用0和1分别代表不建造不运输和建造运输两个场景,“1”表示建造工厂,“0”表示不建筑工厂。

声明目标函数

image.png

我们的决策目标是最小化成本。所以需要计算建造成本、运输成本,也就每个工厂建造的代价,以及建造的每个工厂+每个工厂运输商品到对应店的代价之和最小化。

声明约束

image.png

  1. 我们声明的约束在实际生活中,每个商店有不同工厂的选择。为了简化问题,我们假设每个商店只能选择一个工厂供货,

image.png

  1. 第二条约束是建造工厂才能提供货物给商店,由于第一条约束是每个商店只能选择一个工厂供货,所以我们需建造的工厂数量至少满足将商品提供给每个商店,也就是至少有一个工厂可以向所有的商店供货。比如A工厂,A工厂的二进制是“1”,即建造A工厂,然后A工厂提供给每一个商店的二进制状态也是“1”,也就是至少有一个工厂建造。

image.png

  1. 第三条约束是每间工厂的库存不能小于其所提供的商店需求之和,每个工厂储存的商品数量有限,一个工厂商品清空后,需要从另一个工厂运输。比如A工厂的库存是40,从A工厂运输到商店1、2、3,那么1、2、3商店需要的商品数量不能超过A工厂的库存数量。

结果解析

image.png image.png

我们对这个问题进行求解。最后得出的结果是最小化的总成本是1457。我们建造了一个A工厂、一个C工厂,二号商店是由A工厂供货,三号商店也是由A工厂供货。

四、内容回顾

我们本期主要讲述的是仓库选址问题,考虑仓库的建设成本、运输成本、库存成本、交货需求四个因素最小化总成本。

image.png

扫描二维码获取源代码

仓库选址规划-MindOpt Studio

相关文章
|
4月前
|
达摩院 供应链 安全
光储荷经济性调度问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文介绍使用MindOpt工具优化光储荷经济性调度的数学规划问题。光储荷经济性调度技术旨在最大化能源利用率和经济效益,应用场景包括分布式光伏微网、家庭能源管理系统、商业及工业用电、电力市场参与者等。文章详细阐述了如何通过数学规划方法解决虚拟电厂中的不确定性与多目标优化难题,并借助MindOpt云建模平台、MindOpt APL建模语言及MindOpt优化求解器实现问题建模与求解。最终案例展示了如何通过合理充放电策略减少37%的电费支出,实现经济与环保双重效益。读者可通过提供的链接获取完整源代码。
|
4月前
|
达摩院 BI 索引
切割问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文主要讲述了使用MindOpt工具对切割问题进行优化的过程与实践。切割问题是指从一维原材料(如木材、钢材等)中切割出特定长度的零件以满足不同需求,同时尽可能减少浪费的成本。文章通过实例详细介绍了如何使用MindOpt云上建模求解平台及其配套的MindOpt APL建模语言来解决此类问题,包括数学建模、代码实现、求解过程及结果分析等内容。此外,还讨论了一维切割问题的应用场景,并对其进行了扩展,探讨了更复杂的二维和三维切割问题。通过本文的学习,读者能够掌握利用MindOpt工具解决实际切割问题的方法和技术。
|
4月前
|
达摩院 算法 安全
智慧楼宇多目标调度问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文探讨了使用MindOpt工具优化智慧楼宇的多目标调度问题,特别是在虚拟电厂场景下的应用。智慧楼宇通过智能化技术综合考虑能耗、舒适度等多目标,实现楼宇设备的有效管理和调度。虚拟电厂作为多能源聚合体,能够参与电力市场,提供调峰、调频等辅助服务。文章介绍了如何使用MindOpt云上建模求解平台及MindOpt APL建模语言对楼宇多目标调度问题进行数学建模和求解,旨在通过优化储能设备的充放电操作来最小化用电成本、碳排放成本和功率变化成本,从而实现经济、环保和电网稳定的综合目标。最终结果显示,在使用储能设备的情况下,相比不使用储能设备的情形,成本节约达到了约48%。
|
4月前
|
达摩院 供应链 JavaScript
网络流问题--仓储物流调度【数学规划的应用(含代码)】阿里达摩院MindOpt
本文通过使用MindOpt工具优化仓储物流调度问题,旨在提高物流效率并降低成本。首先,通过考虑供需匹配、运输时间与距离、车辆容量、仓库储存能力等因素构建案例场景。接着,利用数学规划方法,包括线性规划和网络流问题,来建立模型。在网络流问题中,通过定义节点(资源)和边(资源间的关系),确保流量守恒和容量限制条件下找到最优解。文中还详细介绍了MindOpt Studio云建模平台和MindOpt APL建模语言的应用,并通过实例展示了如何声明集合、参数、变量、目标函数及约束条件,并最终解析了求解结果。通过这些步骤,实现了在满足各仓库需求的同时最小化运输成本的目标。
|
7月前
|
达摩院 开发者 容器
「达摩院MindOpt」优化形状切割问题(MILP)
在制造业,高效地利用材料不仅是节约成本的重要环节,也是可持续发展的关键因素。无论是在金属加工、家具制造还是纺织品生产中,原材料的有效利用都直接影响了整体效率和环境影响。
「达摩院MindOpt」优化形状切割问题(MILP)
|
7月前
|
人工智能 自然语言处理 达摩院
MindOpt 云上建模求解平台:多求解器协同优化
数学规划是一种数学优化方法,主要是寻找变量的取值在特定的约束情况下,使我们的决策目标得到一个最大或者最小值的决策。
|
2月前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
37 1
|
5月前
|
人工智能 算法 调度
优化问题之如何选择合适的优化求解器
优化问题之如何选择合适的优化求解器
|
5月前
|
调度 决策智能
优化问题之优化求解器有哪些主要的评估特性
优化问题之优化求解器有哪些主要的评估特性
|
达摩院 调度
使用达摩院MindOpt优化交通调度_最大化通行量—线性规划问题
在数学规划中,网络流问题是指一类基于网络模型的流量分配问题。网络流问题的目标是在网络中分配资源,使得网络的流量满足一定的限制条件,并且使得某些目标函数最小或最大化。网络流问题通常涉及一个有向图,图中每个节点表示一个资源,每条边表示资源之间的关系。边上有一个容量值,表示该边上最多可以流动的资源数量。流量从源节点开始流出,经过一系列中间节点,最终到达汇节点。在这个过程中,需要遵守一定的流量守恒和容量限制条件。