技术笔记:trident介绍

本文涉及的产品
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 技术笔记:trident介绍

(一)理论基础


很多其它理论以后再补充,或者參考书籍


1、trident是什么?


Trident is a high-level abstraction for doing realtime computing on top of Storm. It allows you to seamlessly intermix high throughput (millions of messages per second), stateful stream processing with low latency distributed querying. If you're familiar with


high level batch processing tools like Pig or Cascading, the concepts of Trident will be very familiar – Trident has joins, aggregations, grouping, functions, and filters. In addition to these, Trident adds primitives for doing stateful, incremental processing


on top of any database or persistence store. Trident has consistent, exactly-once semantics, so it is easy to reason about Trident topologies.


简单的说,trident是storm的更高层次抽象,相对storm,它主要提供了2个方面的优点:


(1)提供了更高层次的抽象,将经常使用的count,sum等封装成了方法,能够直接调用,不须要自己实现。


(2)提供了一次原语,如groupby等。


(3)提供了事务支持,能够保证数据均处理且仅仅处理了一次。


2、trident每次处理消息均为batch为单位,即一次处理多个元组。


3、事务类型


关于事务类型,有2个比較easy混淆的概念:spout的事务类型以及事务状态。


它们都有3种类型。分别为:事务型、非事务型和透明事务型。


(1)spout


spout的类型指定了因为下游出现故障导致元组须要重放时,应该怎么发送元组。


事务型spout:重放时能保证同一个批次发送同一批元组。能够保证每个元组都被发送且仅仅发送一个。且同一个批次所发送的元组是一样的。


非事务型spout:没有不论什么保障,发完就算。


透明事务型spout:同一个批次发送的元组有可能不同的,它能够保证每个元组都被发送且仅仅发送一次,但不能保证重放时同一个批次的数据是一样的。这对于部分失效的情况尤事实上用,假如以kafka作为spout。当一个topic的某个分区失效时。能够用其他分区的数据先形成一个批次发送出去,假设是事务型spout,则必须等待那个分区恢复后才干继续发送。


这三种类型能够分别通过实现ITransactionalSpout、ITridentSpout、IOpaquePartitionedTridentSpout接口来定义。


(2)state


state的类型指定了假设将storm的中间输出或者终于输出持久化到某个地方(如内存)。当某个批次的数据重放时应//代码效果参考:http://hnjlyzjd.com/xl/wz_24615.html

该假设更新状态。state对于下游出现错误的情况尤事实上用。

事务型状态:同一批次tuple提供的结果是同样的。


非事务型状态:没有回滚能力。更新操作是永久的。


透明事务型状态:更新操作基于先前的值,这样因为这批数据发生变化。相应的结果也会发生变化。透明事务型状态除了保存当前数据外,还要保存上一批数据。当数据重放时,能够基于上一批数据作更新。


(二)看官方提供的演示样例


package org.ljh.tridentdemo;


import backtype.storm.Config;


import backtype.storm.LocalCluster;


import backtype.storm.LocalDRPC;


import backtype.storm.StormSubmitter;


import backtype.storm.generated.StormTopology;


import backtype.storm.tuple.Fields;


import backtype.storm.tuple.Values;


import storm.trident.TridentState;


import storm.trident.TridentTopology;


import storm.trident.operation.BaseFunction;


import storm.trident.operation.TridentCollector;


import storm.trident.operation.builtin.Count;


import storm.trident.operation.builtin.FilterNull;


import storm.trident.operation.builtin.MapGet;


import storm.trident.operation.builtin.Sum;


import storm.trident.testing.FixedBatchSpout;


import storm.trident.testing.MemoryMapState;


import storm.trident.tuple.TridentTuple;


public class TridentWordCount {


public static class Split extends BaseFunction {


@Override


public void execute(TridentTuple tuple, TridentCollector collector) {


String sentence = tuple.getString(0);


for (String word : sentence.split(" ")) {


collector.emit(new Values(word));


}


}


}


public static StormTopology buildTopology(LocalDRPC drpc) {


FixedBatchSpout spout =


new FixedBatchSpout(new Fields("sentence"), 3, new Values(


"the cow jumped over the moon"), new Values(


"the man went to the store and bought some candy"), new Values(


"four score and seven years ago"),


new Values("how many apples can you eat"), new Values(


"to be or not to be the person"));


spout.setCycle(true);


//创建拓扑对象


TridentTopology topology = new TridentTopology();


//这个流程用于统计单词数据。结果将被保存在wordCounts中


TridentState wordCounts =


topology.newStream("spout1", spout)


.parallelismHint(16)


.each(new Fields("sentence"), new Split(), new Fields("word"))


.groupBy(new Fields("word"))


.persistentAggregate(new MemoryMapState.Factory(), new Count(),


new Fields("count")).parallelismHint(16);


//这个流程用于查询上面的统计结果


topology.newDRPCStream("words", drpc)


.each(new Fields("args"), new Split(), new Fields("word"))


.groupBy(new Fields("word"))


.stateQuery(wordCounts, new Fields("word"), new MapGet(), new Fields("count"))


.each(new Fields("count"), new FilterNull())


.aggregate(new Fields("count"), new Sum(), new Fields("sum"));


return topology.build();


}


public static void main(String【】 args) throws Exception {


Config conf = new Config();


conf.setMaxSpoutPending(20);


if (args.length == 0) {


LocalDRPC drpc = new LocalDRPC();


LocalCluster cluster = new LocalCluster();


cluster.submitTopology("wordCounter", conf, buildTopology(drpc));


for (int i = 0; i < 100; i++) {


System.out.println("DRPC RESULT: " + drpc.execute("words", "cat the dog jumped"));


Thread.sleep(1000);


}


} else {


conf.setNumWorkers(3);


StormSubmitter.submitTopologyWithProgressBar(args【0】, conf, buildTopology(null));


}


}


}


实例实现了最主要的wordcount功能,然后将结果输出。


关键过程例如以下:


1、定义了输入流


FixedBatchSpout spout =


new FixedBatchSpout(new Fields("sentence"), 3, new Values(


"the cow jumped over the moon"), new Values(


"the man went to the store and bought some candy"), new Values(


"four score and seven years ago"),


new Values("how many apples can you eat"), new Values(


"to be or not to be the person"));


spout.setCycle(true);


(1)使用FixedBatchSpout创建一个输入spout。spout的输出字段为sentence。每3个元组作为一个batch。


(2)数据不断的反复发送。


2、统计单词数量


TridentState wordCounts =


topology.newStream("spout1", spout)


.parallelismHint(16)


.each(new Fields("sentence"), new Split(), new Fields("word"))


.groupBy(new Fields("word"))


.persistentAggregate(new MemoryMapState.Factory(), new Count(),


new Fields("count")).parallelismHint(16);


这个流程用于统计单词数据,结果将被保存在wordCounts中。6行代码的含义分别为:


(1)首先从spout中读取消息,spout1定义了zookeeper中用于保存这个拓扑的节点名称。


(2)并行度设置为16,即16个线程同一时候从spout中读取消息。


(3)each中的三个參数分别为:输入字段名称,处理函数,输出字段名称。即从字段名称叫sentence的数据流中读取数据,然后经过new Split()处理后,以word作为字段名发送出去。当中new Split()后面介绍。它的功能就是将输入的内容以空格为界作了切分。


(4)将字段名称为word的数据流作分组,即同样值的放在一组。


(5)将已经分好组的数据作统计,结果放到MemoryMapState。然后以count作为字段名称将结果发送出去。这步骤会同一时候存储数据及状态,并将返回TridentState对象。


(6)并行度设置。


3、输出统计结果


topology.newDRPCStream("words", drpc)


.each(new Fields("args"), new Split(), new Fields("word"))


.groupBy(new Fields("word"))


.stateQuery(wordCounts, new Fields("word"), new MapGet(), new Fields("count"))


.each(new Fields("count"), new FilterNull())


.aggregate(new Fields("count"), new Sum(), new Fields("sum"));


这个流程从上述的wordCounts对象中读取结果。并返回。6行代码的含义分别为:


(1)等待一个drpc调用,从drpcserver中接受words的调用来提供消息。


调用代码例如以下:


drpc.execute("words", "cat the dog jumped")


(2)输入为上述调用中提供的參数,经过Split()后。以word作为字段名称发送出去。


(3)以word的值作分组。


(4)从wordCounts对象中查询结果。


4个參数分别代表:数据来源,输入数据,内置方法(用于从map中依据key来查找value)。输出名称。


(5)过滤掉空的查询结果,如本例中,cat和dog都没有结果。


(6)将结果作统计,并以sum作为字段名称发送出去,这也是DRPC调用所返回的结果。假设没有这一行。最后的输出结果


DRPC RESULT: 【【"cat the dog jumped","the",2310】,【"cat the dog jumped","jumped",462】】


加上这一行后,结果为:


DRPC RESULT: 【【180】】


4、split的字义


public static class Split extends BaseFunction {


@Override


public void execute(TridentTuple tuple, TridentCollector collector) {


String sentence = tuple.getString(0);


for (String word : sentence.split(" ")) {


collector.emit(new Values(word));


}


}


}


注意它最后会发送数据。


5、创建并启动拓扑


public static void main(String【】 args) throws Exception {


Config conf = new Config();


conf.setMaxSpoutPending(20);


if (args.length == 0) {


LocalDRPC drpc = new LocalDRPC();


LocalCluster cluster = new LocalCluster();


cluster.submitTopology("wordCounter", conf, buildTopology(drpc));


for (int i = 0; i < 100; i++) {


System.out.println("DRPC RESULT: " + drpc.execute("words", "cat the dog jumped"));


Thread.sleep(1000);


}


} else {


conf.setNumWorkers(3);


StormSubmitter.submitTopologyWithProgressBar(args【0】, conf, buildTopology(null));


}


}


(1)当无參数执行时。启动一个本地的集群,及自已创建一个drpc对象来输入。


(2)当有參数执行时,设置worker数量为3。然后提交拓扑到集群。并等待远程的drpc调用。


(三)使用kafka作为数据源的一个样例


package com.netease.sytopology;


import java.io.File;


import java.io.FileWriter;


import java.io.IOException;


import java.util.Arrays;


import org.slf4j.Logger;


import org.slf4j.LoggerFactory;


import storm.kafka.BrokerHosts;


import storm.kafka.StringScheme;


import storm.kafka.ZkHosts;


import storm.kafka.trident.OpaqueTridentKafkaSpout;


import storm.kafka.trident.TridentKafkaConfig;


import storm.trident.TridentTopology;


import storm.trident.operation.BaseFunction;


import storm.trident.operation.TridentCollector;


import storm.trident.operation.builtin.Count;


import storm.trident.testing.MemoryMapState;


import storm.trident.tuple.TridentTuple;


import backtype.storm.Config;


import backtype.storm.StormSubmitter;


import backtype.storm.generated.AlreadyAliveException;


import backtype.storm.generated.InvalidTopologyException;


import backtype.storm.generated.StormTopology;


import backtype.storm.spout.SchemeAsMultiScheme;


import backtype.storm.tuple.Fields;


import backtype.storm.tuple.Values;


/


本类完毕下面内容


*/


public class SyTopology {


public static final Logger LOG = LoggerFactory.getLogger(SyTopology.class);


private final BrokerHosts brokerHosts;


public SyTopology(String kafkaZookeeper) {


brokerHosts = new ZkHosts(kafkaZookeeper);


}


public StormTopology buildTopology() {


TridentKafkaConfig kafkaConfig = new TridentKafkaConfig(brokerHosts, "ma30", "storm");


kafkaConfig.scheme = new SchemeAsMultiScheme(new StringScheme());


// TransactionalTridentKafkaSpout kafkaSpout = new


// TransactionalTridentKafkaSpout(kafkaConfig);


OpaqueTridentKafkaSpout kafkaSpout = new OpaqueTridentKafkaSpout(kafkaConfig);


TridentTopology topology = new TridentTopology();


// TridentState wordCounts =


topology.newStream("kafka4", kafkaSpout).


each(new Fields("str"), new Split(),


new Fields("word")).groupBy(new Fields("word"))


.persistentAggregate(new MemoryMapState.Factory(), new Count(),


new Fields("count")).parallelismHint(16);


// .persistentAggregate(new HazelCastStateFactory(), new Count(),


// new Fields("aggregates_words")).parallelismHint(2);


return topology.build();


}


public static void main(String【】 args) throws AlreadyAliveException, InvalidTopologyException {


String kafkaZk = args【0】;


SyTopology topology = new SyTopology(kafkaZk);


Config config = new Config();


config.put(Config.TOPOLOGY_TRIDENT_BATCH_EMIT_INTERVAL_MILLIS, 2000);


String name = args【1】;


String dockerIp = args【2】;


config.setNumWorkers(9);


config.setMaxTaskParallelism(5);


config.put(Config.NIMBUS_HOST, dockerIp);


config.put(Config.NIMBUS_THRIFT_PORT, 6627);


config.put(Config.STORM_ZOOKEEPER_PORT, 2181);


config.put(Config.STORM_ZOOKEEPER_SERVERS, Arrays.asList(dockerIp));


StormSubmitter.submitTopology(name, config, topology.buildTopology());


}


static class Split extends BaseFunction {


public void execute(TridentTuple tuple, TridentCollector collector) {


String sentence = tuple.getString(0);


for (String word : sentence.split(",")) {


try {


FileWriter fw = new FileWriter(new File("/home/data/test/ma30/ma30.txt"),true);


fw.write(word);


fw.flush();


fw.close();


} catch (IOException e) {


// TODO Auto-generated catch block


e.printStackTrace();


}


collector.emit(new Values(word));


}


}


}


}


本例将从kafka中读取消息,然后对消息依据“,”作拆分,并写入一个本地文件。


1、定义kafka想着配置


TridentKafkaConfig kafkaConfig = new TridentKafkaConfig(brokerHosts, "ma30", "storm");


kafkaConfig.scheme = new SchemeAsMultiScheme(new StringScheme());


OpaqueTridentKafkaSpout kafkaSpout = new OpaqueTridentKafkaSpout(kafkaConfig);


当中ma30是订阅的topic名称。


2、从kafka中读取消息并处理


topology.newStream("kafka4", kafkaSpout).


each(new Fields("str"), new Split(),new Fields("word")).


groupBy(new Fields("word"))


.persistentAggregate(new MemoryMapState.Factory(), new Count(),


new Fields("count")).parallelismHint(16);


(1)指定了数据来源,并指定zookeeper中用于保存数据的位置,即保存在/transactional/kafka4。


(2)指定处理方法及发射的字段。


(3)依据word作分组。


(4)计数后将状态写入MemoryMapState


提交拓扑:


storm jar target/sytopology2-0.0.1-SNAPSHOT.jar com.netease.sytopology.SyTopology 192.168.172.98:2181/kafka test3 192.168.172.98


此时能够在/home/data/test/ma30/ma30.txt看到split的结果

目录
打赏
0
0
0
0
0
分享
相关文章
当WPF遇见OpenGL:一场关于如何在Windows Presentation Foundation中融入高性能跨平台图形处理技术的精彩碰撞——详解集成步骤与实战代码示例
【8月更文挑战第31天】本文详细介绍了如何在Windows Presentation Foundation (WPF) 中集成OpenGL,以实现高性能的跨平台图形处理。通过具体示例代码,展示了使用SharpGL库在WPF应用中创建并渲染OpenGL图形的过程,包括开发环境搭建、OpenGL渲染窗口创建及控件集成等关键步骤,帮助开发者更好地理解和应用OpenGL技术。
385 0
IM跨平台技术学习(九):全面解密新QQ桌面版的Electron内存优化实践
本文我们将和大家分享新版 QQ 在内存优化方面的探索和阶段性优化进展。虽然本文的讨论主要集中在 Windows 平台,但由于 Electron 的跨平台特性,大部分优化措施也同样适用于 macOS 和 Linux 平台。
247 0
IM跨平台技术学习(八):新QQ桌面版为何选择Electron作为跨端框架
在瞬息万变的互联网行业中,年过二十四的即时通讯IM应用 QQ 堪称超长寿的产品,见证了中国互联网崛起的完整历程。 然而,如今这个元老级产品经历了一次从内到外彻底的重构。在这次重构中,QQ 选择了 Electron 作为 UI 跨平台开发框架。 尽管 Electron 被 Slack、Visual Studio Code 和 Discord 等大型产品广泛使用,但也引发了一些网友的担忧,例如内存占用、安装包体积和启动速度等方面的问题。本文内容整理自 QQ 技术团队的采访,我们一起来看看QQ团队选择Electron作为桌面版跨端框架背后的决策与思考。
506 0
深入理解浏览器内核 - 概述
深入理解浏览器内核 - 概述
153 0
storm笔记:Trident应用
Trident是基于Storm的实时计算模型的高级抽象。它可以实现高吞吐(每秒数百万条消息)的有状态流处理和低延迟分布式查询。
204 0
storm笔记:Trident应用
storm笔记:Trident状态
在storm笔记:Trident应用中说了下Trident的使用,这里说下Trident几种状态的变化及其对应API的使用。
103 0
storm笔记:Trident状态
一起谈.NET技术,Silverlight 4.0发布之际,让我们重新再认识一次Silverlight这位乱世英雄!
  Microsoft Silverlight是微软所发展的 Web 前端应用程序开发解决方案,是微软丰富型互联网应用程序Rich Internet Application(简称RIA)策略的主要应用程序开发平台之一,以浏览器插件形式,提供 Web 应用程序中多媒体(含影音流与音效流)与高度交互性前端应用程序的解决方案,同时它也是微软 UX(用户体验)策略中的一环。
1505 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等