【YOLOv8改进 - 注意力机制】Triplet Attention:轻量有效的三元注意力

简介: **摘要:** 本文提出TripletAttention,一种轻量级的计算机视觉注意力机制,通过三分支结构增强跨维度交互。该方法利用旋转操作和残差变换在通道和空间维度上建立依赖,提升模型性能,同时保持低计算成本。作为附加模块,它能集成到现有骨干网络中,适用于图像分类及目标检测等任务。实验证实在ImageNet-1k、MSCOCO和PASCAL VOC上取得良好效果,并提供GradCAM可视化分析。代码已开源:[GitHub](https://github.com/LandskapeAI/triplet-attention)。

摘要

得益于在通道或空间位置之间构建相互依赖关系的能力,注意力机制在最近被广泛研究并广泛应用于各种计算机视觉任务中。在本文中,我们研究了轻量但有效的注意力机制,并提出了三重注意力,这是一种通过使用三分支结构捕获跨维度交互来计算注意力权重的新方法。对于输入张量,三重注意力通过旋转操作及后续的残差变换构建维度间依赖关系,并以可忽略的计算开销编码通道间和空间信息。我们的方法简单且高效,可以作为附加模块轻松插入经典骨干网络中。我们在各种具有挑战性的任务中证明了我们方法的有效性,包括 ImageNet-1k 上的图像分类以及 MSCOCO 和 PASCAL VOC 数据集上的目标检测。此外,我们通过可视化检查 GradCAM 和 GradCAM++ 结果,提供了对三重注意力性能的广泛见解。我们方法的实证评估支持了在计算注意力权重时捕捉跨维度依赖关系的重要性。本文的代码可在 https://github.com/LandskapeAI/triplet-attention 公开获取。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

给定一个输入张量
,首先将其传递到Triplet Attention模块中的三个分支中。\ 在第1个分支中,在H维度和C维度之间建立了交互:
为了实现这一点,输入张量 \chi 沿H轴逆时针旋转90°。这个旋转张量 \hat{\chi }{1} 表示为的形状为 (W×H×C) ,再然后经过Z-Pool后的张量 \hat{\chi }{1}^{ } 的shape为 (2×H×C) ,然后,通过内核大小为 k×k 的标准卷积层,再通过批处理归一化层,提供维数 (1×H×C) 的中间输出。然后,通过将张量通过sigmoid来生成的注意力权值。在最后输出是沿着H轴进行顺时针旋转90°保持和输入的shape一致。\ 在第2个分支中,在C维度和W维度之间建立了交互:
为了实现这一点,输入张量 \chi 沿W轴逆时针旋转90°。这个旋转张量 \hat{\chi }{2} 表示为的形状为 (H×C×W) ,再然后经过Z-Pool后的张量 \hat{\chi }{2}^{
} 的shape为 (2×C×W ) ,然后,通过内核大小为 k×k 的标准卷积层,再通过批处理归一化层,提供维数 (1×C×W) 的中间输出。然后,通过将张量通过sigmoid来生成的注意力权值。在最后输出是沿着W轴进行顺时针旋转90°保持和输入的shape一致。\ 在第3个分支中,在H维度和W维度之间建立了交互:

输入张量
的通道通过Z-pool将变量简化为2。将这个形状的简化张量 (2×H×W) 简化后通过核大小 k×k 定义的标准卷积层,然后通过批处理归一化层。输出通过sigmoid激活层生成形状为(1×H×W)的注意权值,并将其应用于输入
,得到结果
。然后通过简单的平均将3个分支产生的精细张量 (C×H×W) 聚合在一起。 最终输出的Tensor:

核心代码


import torch
import torch.nn as nn


class BasicConv(nn.Module):
    def __init__(
        self,
        in_planes,
        out_planes,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        relu=True,
        bn=True,
        bias=False,
    ):
        super(BasicConv, self).__init__()
        self.out_channels = out_planes
        self.conv = nn.Conv2d(
            in_planes,
            out_planes,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )
        self.bn = (
            nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True)
            if bn
            else None
        )
        self.relu = nn.ReLU() if relu else None

    def forward(self, x):
        x = self.conv(x)
        if self.bn is not None:
            x = self.bn(x)
        if self.relu is not None:
            x = self.relu(x)
        return x


class ChannelPool(nn.Module):
    def forward(self, x):
        return torch.cat(
            (torch.max(x, 1)[0].unsqueeze(1), torch.mean(x, 1).unsqueeze(1)), dim=1
        )


class SpatialGate(nn.Module):
    def __init__(self):
        super(SpatialGate, self).__init__()
        kernel_size = 7
        self.compress = ChannelPool()
        self.spatial = BasicConv(
            2, 1, kernel_size, stride=1, padding=(kernel_size - 1) // 2, relu=False
        )

    def forward(self, x):
        x_compress = self.compress(x)
        x_out = self.spatial(x_compress)
        scale = torch.sigmoid_(x_out)
        return x * scale


class TripletAttention(nn.Module):
    def __init__(
        self,
        gate_channels,
        reduction_ratio=16,
        pool_types=["avg", "max"],
        no_spatial=False,
    ):
        super(TripletAttention, self).__init__()
        self.ChannelGateH = SpatialGate()
        self.ChannelGateW = SpatialGate()
        self.no_spatial = no_spatial
        if not no_spatial:
            self.SpatialGate = SpatialGate()

    def forward(self, x):
        x_perm1 = x.permute(0, 2, 1, 3).contiguous()
        x_out1 = self.ChannelGateH(x_perm1)
        x_out11 = x_out1.permute(0, 2, 1, 3).contiguous()
        x_perm2 = x.permute(0, 3, 2, 1).contiguous()
        x_out2 = self.ChannelGateW(x_perm2)
        x_out21 = x_out2.permute(0, 3, 2, 1).contiguous()
        if not self.no_spatial:
            x_out = self.SpatialGate(x)
            x_out = (1 / 3) * (x_out + x_out11 + x_out21)
        else:
            x_out = (1 / 2) * (x_out11 + x_out21)
        return x_out

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/139999693

相关文章
|
6月前
|
机器学习/深度学习 Ruby
YOLOv8改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
YOLOv8改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
693 0
|
4月前
|
机器学习/深度学习 Serverless 计算机视觉
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
|
1月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
60 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
18天前
|
机器学习/深度学习 计算机视觉
【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力
【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力本文介绍了一种高效的视觉变换器——DilateFormer,通过多尺度扩张注意力(MSDA)模块,在保持高性能的同时显著降低计算成本。MSDA通过在滑动窗口内模拟局部和稀疏的块交互,实现了多尺度特征聚合。实验结果显示,DilateFormer在ImageNet-1K分类、COCO对象检测/实例分割和ADE20K语义分割任务上均取得了优异的性能,且计算成本比现有模型减少70%。
【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力
|
18天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力
【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力.EMA(Efficient Multi-Scale Attention)模块是一种高效多尺度注意力机制,旨在提高计算机视觉任务中的特征表示效果。该模块通过结合通道和空间信息、采用多尺度并行子网络结构以及优化坐标注意力机制,实现了更高效和有效的特征表示。EMA模块在图像分类和目标检测任务中表现出色,使用CIFAR-100、ImageNet-1k、MS COCO和VisDrone2019等数据集进行了广泛测试。
【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力
|
4月前
|
机器学习/深度学习 算法 测试技术
【YOLOv8改进 - 注意力机制】Focused Linear Attention :全新的聚焦线性注意力模块
YOLOv8专栏探讨了该目标检测算法的创新改进,包括使用聚焦线性注意力模块,解决了Transformer在视觉任务中的效率和表达力问题。该模块增强自注意力,提高焦点能力和特征多样性,保持线性复杂度。文章提供了实证证据证明其在多个基准上的性能提升,并在GitHub上发布了代码。论文和更多实战案例链接见文中。
|
4月前
|
机器学习/深度学习 自然语言处理 并行计算
【YOLOv8改进 -注意力机制】Mamba之MLLAttention :基于Mamba和线性注意力Transformer的模型
YOLOv8专栏探讨了该目标检测模型的创新改进,包括使用Mamba模型的线性注意力Transformer变体,称为MLLA。Mamba的成功关键在于遗忘门和块设计,MLLA结合了这些优点,提升了视觉任务的性能。文章提供全面分析,并提出MLLA模型,其在效率和准确性上超过多种视觉模型。论文和代码可在提供的链接中找到。MLLA Block的代码示例展示了如何整合关键组件以实现高效运算。更多配置详情见相关链接。
|
4月前
|
机器学习/深度学习 测试技术 网络架构
【YOLOv10改进-注意力机制】MSCAAttention多尺度卷积注意力
YOLOv10专栏介绍了一种新的卷积网络架构SegNeXt,它在语义分割任务中展现出优于Transformer模型的效率和效果。SegNeXt通过名为Multi-Scale Convolutional Attention (MSCA)的组件,结合局部信息聚合、多尺度上下文捕获和通道关系模拟,提升了性能。在多个数据集上,SegNeXt以较少参数实现了超过现有SOTA的性能,特别是在Pascal VOC 2012上,以1/10的参数量达到90.6%的mIoU。YOLOv10引入了MSCA模块,用于增强目标检测的上下文关注。相关代码和配置详情可在链接中找到。
|
4月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv10改进-注意力机制】HAT(Hybrid Attention Transformer,)混合注意力机制
YOLOv10专栏介绍了一种名为HAT的新方法,旨在改善Transformer在图像超分辨率中的表现。HAT结合通道和窗口注意力,激活更多像素并增强跨窗口信息交互。亮点包括:1) 更多像素激活,2) 有效跨窗口信息聚合,3) 任务特定的预训练策略。HAT模型包含浅层特征提取、深层特征提取和图像重建阶段。提供的代码片段展示了HAT类的定义,参数包括不同层的深度、注意力头数量、窗口大小等。欲了解更多详情和配置,请参考给定链接。
|
4月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv10改进-注意力机制】Polarized Self-Attention: 极化自注意力,双重注意力机制
YOLOv10引入了极化自注意(PSA)块,结合通道和空间注意力,降低信息损失。PSA通过极化过滤保持高分辨率,并用增强处理非线性分布。在2D姿态估计和分割任务上提升1-2点精度,相比基线提升2-4点。代码示例展示了PSA模块如何集成到模型中。更多配置详情见相关链接。
下一篇
无影云桌面