【数据结构与算法】使用数组实现栈:原理、步骤与应用

简介: 【数据结构与算法】使用数组实现栈:原理、步骤与应用

一、引言

🎄栈(Stack)是什么?

  • 栈是一种后进先出(LIFO, Last In First Out)的数据结构。
  • 栈是一种只能在一端进行插入和删除操作的线性表。
  • 允许进行插入和删除操作的一端称为栈顶(top),另一端称为栈底(bottom)。
  • 栈中没有元素时,称为空栈。
  • 栈的基本操作包括:push(入栈)、pop(出栈)、peek(查看栈顶元素)和isEmpty(判断栈是否为空)等。

🎄为什么使用数组实现栈?

  • 数组是一种线性数据结构,能够连续存储数据,且通过索引可以方便地访问任意位置的元素。
  • 因为栈只在栈顶增删,所以基于数组实现,既避免了插入需要移动数据的劣势,又保持了数组访问数据的优势,可以实现高效的栈操作。

二、定义栈结构

🎄栈的结构

  • 指向数组的指针(动态开辟的空间)
  • 标记栈顶位置的变量 top
  • 标记栈的大小的变量 capacity
// 支持动态增长的栈
typedef int STDataType;//对数据类型重命名,方便后期修改类型
typedef struct Stack
{
  STDataType* a;
  int top;    // 栈顶
  int capacity;  // 容量 
}Stack;//定义结构同时重命名

🎄栈顶位置的指向

需要注意的是:top的指向应该始终保持一致性

1.如果top指向栈顶元素,初始不能为0,应该指向-1

2.如果top初始为0,其应该指向栈顶元素的下一个元素

对应的判定栈满和栈空有所不同

三、实现栈的基本操作

🍃初始化

  • 对形参判空
  • 数组指针初始指向空
  • top和capacity初始化为0(这里top指向的是栈顶元素的下一个位置)
// 初始化栈 
void StackInit(Stack* ps)
{
  assert(ps);
  ps->a = NULL;
  ps->top = ps->capacity = 0;
}

🍃销毁

  • 对形参判空
  • 释放数组空间
  • 数组指针指向空
  • top和capacity改为0
// 销毁栈 
void StackDestroy(Stack* ps)
{
  assert(ps);
  free(ps->a);
  ps->a = NULL;
  ps->top = ps->capacity = 0;
}

🍃入栈

判空

判断是否需要扩容(top和capacity相等)

扩容步骤:   空间二倍增长 ,更新数组指针和容量

数据插入到top位置,top位置++

// 入栈 
void StackPush(Stack* ps, STDataType data)
{
  assert(ps);
  //判断是否需要扩容
  if (ps->top == ps->capacity)
  {
    int newcapa = ps->capacity == 0 ? 4 : 2 * (ps->capacity);
    STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newcapa);
    if (tmp == NULL)
    {
      perror("realloc\n");
      exit(1);
    }
    ps->a = tmp;
    ps->capacity = newcapa;
  }
  //确定空间足够之后再插入数据
  ps->a[ps->top] = data;
  ps->top++;
}

🍃出栈

  • 对形参判空
  • 对栈判空
  • top--

(该方法对于栈只存在一个元素的情况也可以正确处理)

// 出栈 
void StackPop(Stack* ps)
{
  assert(ps);
  assert(ps->top);
 
  ps->top--;
}

注意:

即使函数只有一两条语句也还是建议封装成函数,这样可以提高程序的可维护性和可读性

🍃查看栈顶元素

  • 对形参判空
  • 对栈判空
  • 返回top前一个位置的元素
// 获取栈顶元素 
STDataType StackTop(Stack* ps)
{
  assert(ps);
  assert(ps->top);
  return ps->a[ps->top-1];
}

🍃对栈判空

  • 对形参判空
  • 返回top==0的结果(因为这里top指向的是栈顶元素的下一个元素,所以栈空时top==0)
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 
int StackEmpty(Stack* ps)
{
  assert(ps);
 
  return ps->top == 0;
}

🍃获取有效数据个数

  • 对形参判空
  • 返回top  (top对应的下标是栈顶的下一个元素,top就是元素的个数)
// 获取栈中有效元素个数 
int StackSize(Stack* ps)
{
  assert(ps);
 
  return ps->top;
}

四、使用数组实现栈的C语言代码

stack.h 栈的头文件

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
 
// 支持动态增长的栈
typedef int STDataType;//对数据类型重命名,方便后期修改类型
typedef struct Stack
{
  STDataType* a;
  int top;    // 栈顶
  int capacity;  // 容量 
}Stack;//定义结构同时重命名
 
// 初始化栈 
void StackInit(Stack* ps);
// 入栈 
void StackPush(Stack* ps, STDataType data);
// 出栈 
void StackPop(Stack* ps);
// 获取栈顶元素 
STDataType StackTop(Stack* ps);
// 获取栈中有效元素个数 
int StackSize(Stack* ps);
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 
int StackEmpty(Stack* ps);
// 销毁栈 
void StackDestroy(Stack* ps);

stack.c 栈的实现源文件

#include"stack.h"
 
// 初始化栈 
void StackInit(Stack* ps)
{
  assert(ps);
  ps->a = NULL;
  ps->top = ps->capacity = 0;
}
 
// 入栈 
void StackPush(Stack* ps, STDataType data)
{
  assert(ps);
  //判断是否需要扩容
  if (ps->top == ps->capacity)
  {
    int newcapa = ps->capacity == 0 ? 4 : 2 * (ps->capacity);
    STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newcapa);
    if (tmp == NULL)
    {
      perror("realloc\n");
      exit(1);
    }
    ps->a = tmp;
    ps->capacity = newcapa;
  }
  //确定空间足够之后再插入数据
  ps->a[ps->top] = data;
  ps->top++;
}
 
// 出栈 
void StackPop(Stack* ps)
{
  assert(ps);
  assert(ps->top);
 
  ps->top--;
}
 
// 获取栈顶元素 
STDataType StackTop(Stack* ps)
{
  assert(ps);
  assert(ps->top);
  return ps->a[ps->top-1];
}
 
// 获取栈中有效元素个数 
int StackSize(Stack* ps)
{
  assert(ps);
 
  return ps->top;
}
 
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 
int StackEmpty(Stack* ps)
{
  assert(ps);
 
  return ps->top == 0;
}
 
// 销毁栈 
void StackDestroy(Stack* ps)
{
  assert(ps);
  free(ps->a);
  ps->a = NULL;
  ps->top = ps->capacity = 0;
}

test.c  主函数测试文件

#include"stack.h"
 
void test1()
{
  Stack st ;
  StackInit(&st);
  if (StackEmpty(&st))
  {
    printf("栈空\n");
  }
  else
  {
    printf("栈非空\n");
  }
  StackPush(&st, 1);
  StackPush(&st, 2);
  StackPush(&st, 3);
  StackPush(&st, 4);
  if (StackEmpty(&st))
  {
    printf("栈空\n");
  }
  else
  {
    printf("栈非空\n");
  }
  printf("栈中元素个数:%d\n", StackSize(&st));
 
  printf("%d\n", StackTop(&st));
  StackPop(&st);
  printf("%d\n", StackTop(&st));
  StackPop(&st);
  printf("%d\n", StackTop(&st));
  StackPop(&st);
  printf("%d\n", StackTop(&st));
  StackPop(&st);
  if (StackEmpty(&st))
  {
    printf("栈空\n");
  }
  else
  {
    printf("栈非空\n");
  }
 
  StackDestroy(&st);
 
}
 
int main()
{
  test1();
 
  return 0;
}

测试结果

五、栈的应用

  1. 函数调用栈:在程序执行过程中,函数调用是通过栈来实现的。每个函数调用时,其返回地址、局部变量和参数等信息都会被压入栈中,当函数返回时,这些信息会被弹出栈。
  2. 表达式求值:在编译器中,表达式求值通常使用栈来实现。例如,在解析算术表达式时,可以使用两个栈:一个用于存储操作数,另一个用于存储操作符。
  3. 浏览器历史记录:浏览器的“前进”和“后退”功能通常使用栈来实现。用户浏览的网页会被压入栈中,当用户点击“后退”按钮时,会从栈中弹出并显示上一个网页。
  4. 撤销操作:在许多图形编辑器和文本编辑器中,撤销操作通常使用栈来实现。每次编辑操作(如剪切、复制、粘贴等)都会被压入一个撤销栈中,当用户点击“撤销”按钮时,会从栈中弹出并执行相反的操作以撤销上一次编辑。

六、总结

  1. 使用数组实现栈是一种简单且高效的方法,能够充分利用数组的特性来实现栈的基本操作。
  2. 在实际应用中,栈具有广泛的应用场景,如函数调用栈、浏览器的前进后退功能以及表达式求值等。 
相关文章
|
3天前
|
算法 C语言
【数据结构与算法 经典例题】使用栈实现队列(图文详解)
【数据结构与算法 经典例题】使用栈实现队列(图文详解)
|
3天前
|
存储 算法 调度
【数据结构与算法】详解循环队列:基于数组实现高效存储与访问
【数据结构与算法】详解循环队列:基于数组实现高效存储与访问
|
3天前
|
算法 C语言
【数据结构与算法 经典例题】使用队列实现栈(图文详解)
【数据结构与算法 经典例题】使用队列实现栈(图文详解)
|
1天前
|
存储 算法 安全
深入解析RSA算法原理及其安全性机制
深入解析RSA算法原理及其安全性机制
|
1天前
|
存储 算法 安全
MD5哈希算法:原理、应用与安全性深入解析
MD5哈希算法:原理、应用与安全性深入解析
|
1天前
|
算法 安全 Java
AES加解密算法:原理、应用与安全性解析
AES加解密算法:原理、应用与安全性解析
|
1天前
|
机器学习/深度学习 并行计算 算法
技术经验解读:《人工神经网络》第9章遗传算法原理
技术经验解读:《人工神经网络》第9章遗传算法原理
|
3天前
|
算法 程序员 数据处理
【数据结构与算法】使用单链表实现队列:原理、步骤与应用
【数据结构与算法】使用单链表实现队列:原理、步骤与应用
|
3天前
|
存储 测试技术
【数据结构】操作受限的线性表,栈的具体实现
【数据结构】操作受限的线性表,栈的具体实现
16 5
|
4天前
|
算法
【C/数据结构和算法】:栈和队列
【C/数据结构和算法】:栈和队列
14 1