注意力机制详解(二)

简介: 注意力机制(Attention Mechanism)对比分析:无Attention模型中,Encoder-Decoder框架处理文本序列时,输入信息被编码为单一的中间语义表示,导致每个目标单词生成时使用相同编码,忽视了输入序列中各单词的不同影响。引入Attention模型后,每个目标单词根据输入序列动态分配注意力权重,更好地捕捉输入相关性,尤其适用于长序列,避免信息丢失。Self-Attention则进一步在序列内部建立联系,用于理解不同部分间的关系,常见于Transformer和BERT等模型中。

注意力机制详解(一)+https://developer.aliyun.com/article/1544718?spm=a2c6h.13148508.setting.20.2a1e4f0e0WNgrf


有无attention模型对比

无attention机制的模型


文本处理领域的Encoder-Decoder框架可以这么直观地去理解:可以把它看作适合处理由一个句子(或篇章)生成另外一个句子(或篇章)的通用处理模型。对于句子对,我们的目标是给定输入句子Source,期待通过Encoder-Decoder框架来生成目标句子Target。Source和Target可以是同一种语言,也可以是两种不同的语言。而Source和Target分别由各自的单词序列构成:



encoder顾名思义就是对输入句子Source进行编码,将输入句子通过非线性变换转化为中间语义表示C:



对于解码器Decoder来说,其任务是根据句子Source的中间语义表示C和之前已经生成的历史信息,y_1, y_2…y_i-1来生成i时刻要生成的单词y_i



上述图中展示的Encoder-Decoder框架是没有体现出“注意力模型”的,所以可以把它看作是注意力不集中的分心模型。为什么说它注意力不集中呢?请观察下目标句子Target中每个单词的生成过程如下:




💥其中f是Decoder的非线性变换函数。从这里可以看出,在生成目标句子的单词时,不论生成哪个单词,它们使用的输入句子Source的语义编码C都是一样的,没有任何区别。


💥每个yi都依次这么产生,那么看起来就是整个系统根据输入句子Source生成了目标句子Target。如果Source是中文句子,Target是英文句子,那么这就是解决机器翻译问题的Encoder-Decoder框架;如果Source是一篇文章,Target是概括性的几句描述语句,那么这是文本摘要的Encoder-Decoder框架;如果Source是一句问句,Target是一句回答,那么这是问答系统或者对话机器人的Encoder-Decoder框架。由此可见,在文本处理领域,Encoder-Decoder的应用领域相当广泛。


问题点是: 语义编码C是由句子Source的每个单词经过Encoder 编码产生的,这意味着不论是生成哪个单词,还是,其实句子Source中任意单词对生成某个目标单词yi来说影响力都是相同的,这是为何说这个模型没有体现出注意力的缘由。这类似于人类看到眼前的画面,但是眼中却没有注意焦点一样。


有attention机制的模型


💯如果拿机器翻译来解释这个分心模型的Encoder-Decoder框架更好理解,比如输入的是英文句子:Tom chase Jerry,Encoder-Decoder框架逐步生成中文单词:“汤姆”,“追逐”,“杰瑞”。在翻译“杰瑞”这个中文单词的时候,分心模型里面的每个英文单词对于翻译目标单词“杰瑞”贡献是相同的,很明显这里不太合理,显然“Jerry”对于翻译成“杰瑞”更重要,但是分心模型是无法体现这一点的,这就是为何说它没有引入注意力的原因。


💦没有引入注意力的模型在输入句子比较短的时候问题不大,但是如果输入句子比较长,此时所有语义完全通过一个中间语义向量来表示,单词自身的信息已经消失,可想而知会丢失很多细节信息,这也是为何要引入注意力模型的重要原因。


💦上面的例子中,如果引入Attention模型的话,应该在翻译“杰瑞”的时候,体现出英文单词对于翻译当前中文单词不同的影响程度,比如给出类似下面一个概率分布值:(Tom,0.3)(Chase,0.2) (Jerry,0.5).每个英文单词的概率代表了翻译当前单词“杰瑞”时,注意力分配模型分配给不同英文单词的注意力大小。这对于正确翻译目标语单词肯定是有帮助的,因为引入了新的信息。


同理,目标句子中的每个单词都应该学会其对应的源语句子中单词的注意力分配概率信息。这意味着在生成每个单词的时候,原先都是相同的中间语义表示C会被替换成根据当前生成单词而不断变化的。理解Attention模型的关键就是这里,即由固定的中间语义表示C换成了根据当前输出单词来调整成加入注意力模型的变化的。



生成目标句子单词的过程成了下面的形式:



而每个Ci可能对应着不同的源语句子单词的注意力分配概率分布,比如对于上面的英汉翻译来说,其对应的信息如下:



💥f2函数代表Encoder对输入英文单词的某种变换函数,比如如果Encoder是用的RNN模型的话,这个f2函数的结果往往是某个时刻输入后隐层节点的状态值;g代表Encoder根据单词的中间表示合成整个句子中间语义表示的变换函数,一般的做法中,g函数就是对构成元素加权求和。


Lx代表输入句子source的长度, a_ij代表在Target输出第i个单词时source输入句子中的第j个单词的注意力分配系数, 而hj则是source输入句子中第j个单词的语义编码, 假设Ci下标i就是上面例子所说的'汤姆', 那么Lx就是3, h1=f('Tom'), h2=f('Chase'),h3=f('jerry')分别输入句子每个单词的语义编码, 对应的注意力模型权值则分别是0.6, 0.2, 0.2, 所以g函数本质上就是加权求和函数, 如果形象表示的话, 翻译中文单词'汤姆'的时候, 数学公式对应的中间语义表示Ci的形成过程类似下图:



Self-attention介绍


Self-attention就本质上是一种特殊的attention。这种应用在transformer中最重要的结构之一。前面我们介绍了attention机制,它能够帮我们找到子序列和全局的attention的关系,也就是找到权重值𝑤𝑖。Self-attention向对于attention的变化,其实就是寻找权重值的𝑤𝑖过程不同。


为了能够产生输出的向量𝑦𝑖 ,self-attention其实是对所有的输入做了一个加权平均的操作,这个公式和上面的attention是一致的。  



  • 𝑗代表整个序列的长度,并且j𝑗个权重的相加之和等于1。值得一提的是,这里的 wij𝑤𝑖𝑗并不是一个需要神经网络学习的参数,它是来源于𝑥𝑖和𝑥𝑗的之间的计算的结果(这里𝑤𝑖𝑗的计算发生了变化)。它们之间最简单的一种计算方式,就是使用点积的方式。


Self-attention和Attention使用方法


  • 在神经网络中,通常来说你会有输入层(input),应用激活函数后的输出层(output),在RNN当中你会有状态(state)。如果attention (AT) 被应用在某一层的话,它更多的是被应用在输出或者是状态层上,而当我们使用self-attention(SA),这种注意力的机制更多的实在关注input上。
  • Attention (AT) 经常被应用在从编码器(encoder)转换到解码器(decoder)。比如说,解码器的神经元会接受一些AT从编码层生成的输入信息。在这种情况下,AT连接的是**两个不同的组件**(component),编码器和解码器。但是如果我们用**SA**,它就不是关注的两个组件,它只是在关注你应用的**那一个组件**。那这里他就不会去关注解码器了,就比如说在Bert中,使用的情况,我们就没有解码器。
  • SA可以在一个模型当中被多次的、独立的使用(比如说在Transformer中,使用了18次;在Bert当中使用12次)。但是,AT在一个模型当中经常只是被使用一次,并且起到连接两个组件的作用。
  • SA比较擅长在一个序列当中,寻找不同部分之间的关系。比如说,在词法分析的过程中,能够帮助去理解不同词之间的关系。AT却更擅长寻找两个序列之间的关系,比如说在翻译任务当中,原始的文本和翻译后的文本。这里也要注意,在翻译任务重,SA也很擅长,比如说Transformer。
  • AT可以连接两种不同的模态,比如说图片和文字。SA更多的是被应用在同一种模态上,但是如果一定要使用SA来做的话,也可以将不同的模态组合成一个序列,再使用SA。


Self-attetion实现步骤

self-attention机制的实现步骤:


  • 第一步: 准备输入
  • 第二步: 初始化参数
  • 第三步: 获取key,query和value
  • 第四步: 给input1计算attention score
  • 第五步: 计算softmax
  • 第六步: 给value乘上score
  • 第七步: 给value加权求和获取output1
  • 第八步: 重复步骤4-7,获取output2,output3


# 这里我们随机设置三个输入, 每个输入的维度是一个4维向量
import torch
x = [
  [1, 0, 1, 0], # Input 1
  [0, 2, 0, 2], # Input 2
  [1, 1, 1, 1]  # Input 3
]
x = torch.tensor(x, dtype=torch.float32)


初始化参数


# 每一个输入都有三个表示,分别为key(橙黄色)query(红色)value(紫色)。比如说,每一个表示我们希望是一个3维的向量。由于输入是4维,所以我们的参数矩阵为 4*3 维。
 
# 为了能够获取这些表示,每一个输入(绿色)要和key,query和value相乘,在例子中,我们使用如下的方式初始化这些参数。
w_key = [
  [0, 0, 1],
  [1, 1, 0],
  [0, 1, 0],
  [1, 1, 0]
]
w_query = [
  [1, 0, 1],
  [1, 0, 0],
  [0, 0, 1],
  [0, 1, 1]
]
w_value = [
  [0, 2, 0],
  [0, 3, 0],
  [1, 0, 3],
  [1, 1, 0]
]
w_key = torch.tensor(w_key, dtype=torch.float32)
w_query = torch.tensor(w_query, dtype=torch.float32)
w_value = torch.tensor(w_value, dtype=torch.float32)
 
print("w_key: \n", w_key)
print("w_query: \n", w_query)
print("w_value: \n", w_value)
相关文章
|
2月前
|
机器学习/深度学习 Ruby
YOLOv5改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
YOLOv5改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
195 0
|
2月前
|
机器学习/深度学习 Ruby
YOLOv8改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
YOLOv8改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
379 0
|
2月前
|
机器学习/深度学习
YOLOv5改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
YOLOv5改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
252 0
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
视觉 注意力机制——通道注意力、空间注意力、自注意力
本文介绍注意力机制的概念和基本原理,并站在计算机视觉CV角度,进一步介绍通道注意力、空间注意力、混合注意力、自注意力等。
1669 0
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
注意力机制详解(一)
注意力机制是受人类认知过程启发的一种深度学习技术,它允许模型动态地聚焦于输入的不同部分,根据上下文分配“注意力”。这种机制最早在序列到序列模型中提出,解决了长距离依赖问题,增强了模型理解和处理复杂数据的能力。基本的注意力计算涉及查询(Q)、键(K)和值(V),通过不同方式(如点积、拼接等)计算相关性并应用softmax归一化,得到注意力权重,最后加权组合值向量得到输出。自注意力是注意力机制的一种形式,其中Q、K和V通常是相同的。在自然语言处理(NLP)中,注意力机制广泛应用在Transformer和预训练模型如BERT中,显著提升了模型的表现。
|
1天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【YOLOv8改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
YOLO目标检测专栏介绍了SimAM,一种无参数的CNN注意力模块,基于神经科学理论优化能量函数,提升模型表现。SimAM通过计算3D注意力权重增强特征表示,无需额外参数。文章提供论文链接、Pytorch实现代码及详细配置,展示了如何在目标检测任务中应用该模块。
|
16天前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 注意力机制 | 添加混合局部通道注意力——MLCA【原理讲解】
YOLOv8专栏介绍了混合局部通道注意力(MLCA)模块,它结合通道、空间和局部信息,提升目标检测性能,同时保持低复杂度。文章提供MLCA原理、代码实现及如何将其集成到YOLOv8中,助力读者实战深度学习目标检测。[YOLOv8改进——更新各种有效涨点方法](https://blog.csdn.net/m0_67647321/category_12548649.html)
|
1月前
|
机器学习/深度学习 自然语言处理 算法
YOLOv5改进 | 注意力机制 | 添加三重注意力机制 TripletAttention【完整代码】
本文介绍了三重注意力机制在YOLOv5目标检测中的应用,这是一种轻量级方法,通过三分支结构捕获跨维度交互来计算注意力权重,几乎不增加计算开销。文章详细阐述了三重注意力的原理,包括全局、组间和组内三个层次的注意力计算,并提供了将TripletAttention模块添加到YOLOv5网络的教程。作者提供了代码实现和yaml配置文件的修改指导,以及在训练脚本中设置配置文件路径的步骤。完整代码附在文章末尾,适合初学者实践。此外,文章还鼓励读者探索在不同位置添加三重注意力以进一步优化模型性能。
|
2月前
|
机器学习/深度学习 自然语言处理 算法
注意力机制(四)(多头注意力机制)
在上一篇注意力机制(三)(不同注意力机制对比)-CSDN博客,重点讲了针对QKV来源不同制造的注意力机制的一些变体,包括交叉注意力、自注意力等。这里再对注意力机制理解中的核心要点进行归纳整理
|
2月前
|
机器学习/深度学习
注意力机制(二)(自注意力机制)
看一个物体的时候,我们倾向于一些重点,把我们的焦点放到更重要的信息上
注意力机制(二)(自注意力机制)