神经网络的反向传播

简介: 梯度下降是神经网络中的优化算法,用于找目标函数最小值,通过梯度指示的最速下降方向调整参数。学习率η控制步长,过大可能导致震荡,过小则收敛慢。初始点随机选择,可能影响找到的最小值。梯度下降有三种方式:批量(BGD)、随机(SGD)和小批量(MBGD),主要区别在于Batch Size。SGD速度快但波动大,BGD准确但慢,MBGD是折中。在训练中,Epoch是完整遍历数据集的次数,Batch是每次处理的数据子集,Iteration是参数更新的次数。反向传播利用链式法则计算损失函数梯度,更新权重。

梯度下降算法


🔥我们来看一下神经网络中的梯度下降算法🔥


梯度下降法是一种优化算法,用于寻找目标函数的最小值。梯度是一个向量,表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处变化最快的方向。在数学上,梯度就是关于输入的偏导数



η是学习率,如果学习率设置得太小,可能会导致收敛速度过慢;如果学习率太大,那就有可能直接跳过最优解,导致算法在最小值附近震荡甚至发散。所以,学习率也需要随着训练的进行而变化。


在实际应用中,梯度下降法的初始点是随机选择的,这意味着最终找到的最小值可能取决于初始点的选择。有时候可能需要多次尝试,或者使用不同的初始点来尝试找到更好的最小值。


🌊在进行模型训练时,Epoch、Batch 和 Iteration 是三个基础且重要的概念。🌊


  • Epoch 指的是整个数据集通过神经网络的次数。换句话说,当网络看完数据集中的所有图片、文本或其他数据类型一次,就算是完成了一个Epoch。
  • Batch 是指将大规模数据划分成小批次数据的过程。每个Batch中包含多个样本,模型会对这些样本进行前向传播和反向传播,计算出参数的梯度并进行更新。Batch的大小,也称为Batch size,决定了每次迭代更新参数的样本数量,对模型收敛速度和效果有一定影响。
  • Iteration 指的是模型在一个Batch中更新一次参数的过程。在一个Epoch中,可能需要多个Iteration来遍历完所有的数据。


梯度下降的几种方式:


批量梯度下降(BGD)在每次迭代时使用整个数据集来计算梯度,这意味着它每次更新都考虑了所有样本的信息。这种方法可以更准确地沿着优化方向前进,但是计算速度较慢,且对于大规模数据集来说可能不太实用。


随机梯度下降(SGD)是在每次迭代中随机选择一个样本来计算梯度并更新参数。这种策略使得SGD比BGD快很多,并且可以处理非常大的数据集。然而,由于它是基于单个样本的,所以可能会引入很多噪声,导致优化过程出现波动。


小批量梯度下降(MBGD)是一种折中的方法,它在每次迭代中使用一小部分随机选取的样本来计算梯度。这种方法既利用了一些样本的信息,又保持了较快的计算速度。


实际上,梯度下降的几种方式的根本区别就在于 Batch Size不同


梯度下降方式 训练次数 Batch Size Number of Batches
BGD N N


SGD N 1


Mini - Batch N B


假设数据集有 50000 个训练样本,现在选择 Batch Size = 256 对模型进行训练。


每个 Epoch 要训练的图片数量:50000 训练集具有的 Batch 个数:50000/256+1=196 每个 Epoch 具有的 Iteration 个数:196 10个 Epoch 具有的 Iteration 个数:1960


import numpy as np
 
def gradient_descent(X, y, theta, alpha, num_iters):
    m = len(y)
    J_history = np.zeros(num_iters)
 
    for i in range(num_iters):
        h = np.dot(X, theta)
        loss = h - y
        gradient = np.dot(X.T, loss) / m
        theta = theta - alpha * gradient
        J_history[i] = np.sum(loss ** 2) / (2 * m)
 
    return theta, J_history
 
# 示例数据
X = np.array([[1, 2], [1, 3], [1, 4], [1, 5]])
y = np.array([3, 4, 5, 6])
theta = np.array([0, 0])
alpha = 0.01
num_iters = 1000
 
# 调用梯度下降函数
theta, J_history = gradient_descent(X, y, theta, alpha, num_iters)
print("Theta:", theta)
print("Loss history:", J_history)


前向和反向传播


利用反向传播算法对神经网络进行训练。与梯度下降算法相结合,对网络中所有权重(w,b)计算损失函数的梯度,并利用梯度值来更新权值以最小化损失函数。


前向传播是神经网络中用于计算预测输出的过程。在训练过程中,输入数据被送入网络,然后通过每一层进行传递,直到得到最终的预测输出。

最后一层神经元的输出作为网络的预测结果。 前向传播的目的是计算给定输入数据时网络的预测输出,以便在后续的训练过程中与实际目标值进行比较,并计算损失。


链式法则是微积分中一个重要的概念,用于计算复合函数的导数。在神经网络中,链式法则用于反向传播算法(Backpropagation),该算法用于计算损失函数相对于网络权重的梯度。


反向传播算法是利用链式法则进行梯度求解及权重更新的。对于复杂的复合函数,我们将其拆分为一系列的加减乘除或指数,对数,三角函数等初等函数,通过链式法则完成复合函数的求导。  



具体来说,链式法则允许我们将损失函数相对于网络输出的导数分解为多个部分,每个部分对应于网络中的一层。其参数为权重 w、b。我们需要求关于 w 和 b 的偏导,然后应用梯度下降公式就可以更新参数。


以w为例,当 𝑥 = 1, 𝑤 = 0, 𝑏 = 0 时,可以得到f(𝑥 ) = 0.25


sigmoid函数的导数计算:



相关文章
|
4月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:理解神经网络与反向传播算法
【9月更文挑战第20天】本文将深入浅出地介绍深度学习中的基石—神经网络,以及背后的魔法—反向传播算法。我们将通过直观的例子和简单的数学公式,带你领略这一技术的魅力。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你打开深度学习的大门,让你对神经网络的工作原理有一个清晰的认识。
WK
|
4月前
|
机器学习/深度学习 算法
神经网络的反向传播是什么
反向传播(Backpropagation)是用于训练神经网络的一种关键算法,其目标是通过计算损失函数关于网络参数的梯度来优化这些参数,从而提升网络性能。该算法包括前向传播和反向传播两个阶段:前者计算预测结果与损失值,后者利用链式法则逐层计算梯度以更新权重和偏置。作为深度学习中最常用的优化方法之一,反向传播广泛应用于多种神经网络模型中,通过不断迭代改进模型的预测准确性和泛化能力。
WK
78 5
|
4月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
3月前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
WK
|
4月前
|
机器学习/深度学习
在神经网络的反向传播中,Tanh和Sigmoid哪个更快
在神经网络反向传播中,Tanh与Sigmoid函数的速度差异并无定论,受网络结构、数据特性及参数设置影响。Sigmoid在远离零时易导致梯度消失,而Tanh因输出范围为(-1, 1)且以0为中心,能更好地缓解此问题,理论上训练速度更快。两者计算复杂度相近,现代硬件优化使这一差距不明显。实际应用中,Sigmoid常用于二分类输出层,Tanh则适用于隐藏层以加速收敛并减少权重更新偏向。随着深度学习发展,ReLU等新激活函数因高效性和轻度梯度消失问题成为主流选择。综合来看,Tanh可能比Sigmoid稍快,但需根据具体任务和网络结构选择。
WK
95 0
|
7月前
|
机器学习/深度学习 算法
**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。
【6月更文挑战第28天】**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。数据从输入层流经隐藏层到输出层,计算预测值。接着,比较预测与真实值计算损失。然后,从输出层开始,利用链式法则反向计算误差和梯度,更新权重以减小损失。此过程迭代进行,直到损失收敛或达到训练次数,优化模型性能。反向传播实现了自动微分,使模型能适应训练数据并泛化到新数据。
78 2
|
7月前
|
机器学习/深度学习 算法 PyTorch
神经网络反向传播算法
神经网络中的反向传播算法是用于训练的关键步骤,通过计算损失函数梯度更新权重。它始于前向传播,即输入数据通过网络得出预测输出,接着计算预测与实际值的误差。反向传播利用链式法则从输出层开始逐层计算误差,更新每一层的权重和偏置。例如,一个包含隐藏层的网络,初始权重随机设定,通过反向传播计算损失函数梯度,如sigmoid激活函数的网络,调整权重以减小预测误差。在Python的PyTorch框架中,可以使用`nn.Linear`定义层,`optimizer`进行参数优化,通过`backward()`计算梯度,`step()`更新参数。
|
7月前
|
机器学习/深度学习 算法
BP反向传播神经网络的公式推导
BP反向传播神经网络的公式推导
44 1
|
8月前
|
机器学习/深度学习 人工智能 算法
神经网络算法——反向传播 Back Propagation
神经网络算法——反向传播 Back Propagation
93 0
|
8月前
|
机器学习/深度学习 算法 TensorFlow
【Python机器学习】神经网络中误差反向传播(BP)算法详解及代码示例(图文解释 附源码)
【Python机器学习】神经网络中误差反向传播(BP)算法详解及代码示例(图文解释 附源码)
123 0