神经网络算法——反向传播 Back Propagation

简介: 神经网络算法——反向传播 Back Propagation

前言

本文将从反向传播的本质、反向传播的原理、反向传播的案例三个方面,详细介绍反向传播(Back Propagation)

反向传播


1、反向传播的本质

(1)前向传播(Forward Propagation)

前向传播是神经网络通过层级结构和参数,将输入数据逐步转换为预测结果的过程,实现输入与输出之间的复杂映射。

前向传播

  • 输入层:

       输入层接收训练集中的样本数据。

       每个样本数据包含多个特征,这些特征被传递给输入层的神经元。

       通常,还会添加一个偏置单元来辅助计算。

  • 隐藏层:

       隐藏层的每个神经元接收来自输入层神经元的信号。

       这些信号与对应的权重相乘后求和,并加上偏置。

       然后,通过激活函数(如sigmoid)处理这个求和结果,得到隐藏层的输出。

  • 输出层:

       输出层从隐藏层接收信号,并进行类似的加权求和与偏置操作。

       根据问题的类型,输出层可以直接输出这些值(回归问题),或者通过激活函数(如softmax)转换为概率分布(分类问题)。

(2)反向传播(Back Propagation)

反向传播算法利用链式法则,通过从输出层向输入层逐层计算误差梯度高效求解神经网络参数的偏导数,以实现网络参数的优化和损失函数的最小化。

反向传播

  • 利用链式法则:

       反向传播算法基于微积分中的链式法则,通过逐层计算梯度来求解神经网络中参数的偏导数。

  • 从输出层向输入层传播:

       算法从输出层开始,根据损失函数计算输出层的误差,然后将误差信息反向传播到隐藏层,逐层计算每个神经元的误差梯度。

  • 计算权重和偏置的梯度:

       利用计算得到的误差梯度,可以进一步计算每个权重和偏置参数对于损失函数的梯度

  • 参数更新:

       根据计算得到的梯度信息,使用梯度下降或其他优化算法来更新网络中的权重和偏置参数,以最小化损失函数。

2、反向传播的原理

(1)链式法则(Chain Rule)

链式法则是微积分中的一个基本定理,用于计算复合函数的导数。如果一个函数是由多个函数复合而成,那么该复合函数的导数可以通过各个简单函数导数的乘积来计算。

链式法则

  • 简化梯度计算:

       在神经网络中,损失函数通常是一个复合函数,由多个层的输出和激活函数组合而成。链式法则允许我们将这个复杂的复合函数的梯度计算分解为一系列简单的局部梯度计算,从而简化了梯度计算的过程。

  • 高效梯度计算:

       通过链式法则,我们可以从输出层开始,逐层向前计算每个参数的梯度,这种逐层计算的方式避免了重复计算,提高了梯度计算的效率。

  • 支持多层网络结构:

       链式法则不仅适用于简单的两层神经网络,还可以扩展到具有任意多层结构的深度神经网络。这使得我们能够训练和优化更加复杂的模型。

(2)偏导数

偏导数是多元函数中对单一变量求导的结果,它在神经网络反向传播中用于量化损失函数随参数变化的敏感度,从而指导参数优化。

偏导数

  • 偏导数的定义:

       偏导数是指在多元函数中,对其中一个变量求导,而将其余变量视为常数的导数。

       在神经网络中,偏导数用于量化损失函数相对于模型参数(如权重和偏置)的变化率。

  • 反向传播的目标:

       反向传播的目标是计算损失函数相对于每个参数的偏导数,以便使用优化算法(如梯度下降)来更新参数。

       这些偏导数构成了梯度,指导了参数更新的方向和幅度。

  • 计算过程:

      输出层偏导数:首先计算损失函数相对于输出层神经元输出的偏导数。这通常直接依赖于所选的损失函数。

       隐藏层偏导数:使用链式法则,将输出层的偏导数向后传播到隐藏层。对于隐藏层中的每个神经元,计算其输出相对于下一层神经元输入的偏导数,并与下一层传回的偏导数相乘,累积得到该神经元对损失函数的总偏导数。

       参数偏导数:在计算了输出层和隐藏层的偏导数之后,我们需要进一步计算损失函数相对于网络参数的偏导数,即权重和偏置的偏导数。

3、反向传播的案例:简单神经网络

(1)网络结构

  • 假设我们有一个简单的两层神经网络,结构如下:

       输入层:2个神经元(输入特征 x1 和 x2)

       隐藏层:2个神经元(带有激活函数 sigmoid)

       输出层:1个神经元(带有激活函数 sigmoid)

  • 网络的权重和偏置如下(这些值是随机初始化的,实际情况中会使用随机初始化):

       输入层到隐藏层的权重矩阵 W1:[0.5, 0.3], [0.2, 0.4]

       隐藏层到输出层的权重向量 W2:[0.6, 0.7]

       隐藏层的偏置向量 b1:[0.1, 0.2]

       输出层的偏置 b2:0.3

(2)前向传播

  • 给定输入 [0.5, 0.3],进行前向传播:

       隐藏层输入:[0.5*0.5 + 0.3*0.2 + 0.1, 0.5*0.3 + 0.3*0.4 + 0.2] = [0.31, 0.29]

       隐藏层输出(经过 sigmoid 激活函数):[sigmoid(0.31), sigmoid(0.29)] [0.57, 0.57]

       输出层输入:0.6*0.57 + 0.7*0.57 + 0.3 = 0.71

       输出层输出(预测值,经过sigmoid激活函数):sigmoid(0.71) 0.67

(3)损失计算

  • 假设真实标签是 0.8,使用均方误差(MSE)计算损失:

       损失 =

(4)反向传播

计算损失函数相对于网络参数的偏导数,并从输出层开始反向传播误差。

  • 输出层偏导数:

       损失函数对输出层输入的偏导数 :2 * (0.67 - 0.8) * sigmoid_derivative(0.71) -0.05

Sigmoid函数的导数:sigmoid(x) * (1 - sigmoid(x))

  • 隐藏层偏导数:

       损失函数对隐藏层每个神经元输出的偏导数 :[δ2 * 0.6 * sigmoid_derivative(0.31), δ2 * 0.7 * sigmoid_derivative(0.29)]

       计算后得到 δ1 ≈ [-0.01, -0.01](这里简化了计算,实际值可能有所不同)

  • 参数偏导数:

       对于权重 W2:[δ2 * 隐藏层输出1,δ2 * 隐藏层输出2] = [-0.03, -0.04]

       对于偏置 b2:δ2 = -0.05

       对于权重 W1 和 偏置 b1,需要更复杂的计算,因为它们影响到隐藏层的输出,进而影响到输出层的输入和最终的损失。这些偏导数依赖于 δ1 和输入层的值。

(5)参数更新

  • 使用梯度下降更新参数(学习率设为 0.1):

       更新 W2:w2 - 学习率 * 参数偏导数

       更新 b2:b2 - 学习率 * 参数偏导数

       同样地更新 W1 和 b1

(6)迭代

  • 重复步骤 2-5,直到网络收敛或达到预设的迭代次数。

参考:架构师带你玩转AI

目录
相关文章
|
7天前
|
运维 监控 算法
解读 C++ 助力的局域网监控电脑网络连接算法
本文探讨了使用C++语言实现局域网监控电脑中网络连接监控的算法。通过将局域网的拓扑结构建模为图(Graph)数据结构,每台电脑作为顶点,网络连接作为边,可高效管理与监控动态变化的网络连接。文章展示了基于深度优先搜索(DFS)的连通性检测算法,用于判断两节点间是否存在路径,助力故障排查与流量优化。C++的高效性能结合图算法,为保障网络秩序与信息安全提供了坚实基础,未来可进一步优化以应对无线网络等新挑战。
|
4天前
|
监控 算法 安全
基于 PHP 语言深度优先搜索算法的局域网网络监控软件研究
在当下数字化时代,局域网作为企业与机构内部信息交互的核心载体,其稳定性与安全性备受关注。局域网网络监控软件随之兴起,成为保障网络正常运转的关键工具。此类软件的高效运行依托于多种数据结构与算法,本文将聚焦深度优先搜索(DFS)算法,探究其在局域网网络监控软件中的应用,并借助 PHP 语言代码示例予以详细阐释。
21 1
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
248 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
90 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
10天前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
|
20天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
10天前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
18天前
|
监控 算法 安全
公司电脑网络监控场景下 Python 广度优先搜索算法的深度剖析
在数字化办公时代,公司电脑网络监控至关重要。广度优先搜索(BFS)算法在构建网络拓扑、检测安全威胁和优化资源分配方面发挥重要作用。通过Python代码示例展示其应用流程,助力企业提升网络安全与效率。未来,更多创新算法将融入该领域,保障企业数字化发展。
40 10
|
1月前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。