Pandas透视表及应用(一)

简介: 数据透视表(Pivot Table)是一种交互式的表,可以进行某些计算,如求和与计数等。所进行的计算与数据跟数据透视表中的排列有关。

Pandas 透视表概述


数据透视表(Pivot Table)是一种交互式的表,可以进行某些计算,如求和与计数等。所进行的计算与数据跟数据透视表中的排列有关。


之所以称为数据透视表,是因为可以动态地改变它们的版面布置,以便按照不同方式分析数据,也可以重新安排行号、列标和页字段。每一次改变版面布置时,数据透视表会立即按照新的布置重新计算数据。另外,如果原始数据发生更改,则可以更新数据透视表。


Pandas pivot_table函数介绍:pandas有两个pivot_table函数


  • pandas.pivot_table
  • pandas.DataFrame.pivot_table
  • pandas.pivot_table 比 pandas.DataFrame.pivot_table 多了一个参数data,data就是一个dataframe,实际上这两个函数相同


pivot_table参数中最重要的四个参数 values,index,columns,aggfunc,下面通过案例介绍pivot_tabe的使用


零售会员数据分析案例


业务背景介绍


某女鞋连锁零售企业,当前业务以线下门店为主,线上销售为辅,通过对会员的注册数据以及的分析,监控会员运营情况,为后续会员运营提供决策依据。


会员等级说明:


  1. 白银: 注册(0)


  1. 黄金: 下单(1~3888)


  1. 铂金: 3888~6888


  1. 钻石: 6888以上


案例中用到的数据:


  1. 会员信息查询.xlsx


  1. 会员消费报表.xlsx


  1. 门店信息表.xlsx


  1. 全国销售订单数量表.xlsx


每月存量,增量是最基本的指标,通过会员数量考察会员运营情况


# 加载数据
import pandas as pd
custom_info=pd.read_excel('data/会员信息查询.xlsx')
custom_info.info()
# 会员信息查询
custom_info.head()


需要按月统计注册的会员数量


# 给 会员信息表 添加年月列
from datetime import datetime
custom_info.loc[:,'注册年月'] = custom_info['注册时间'].apply(lambda x : x.strftime('%Y-%m'))
custom_info[['会员卡号','会员等级','会员来源','注册时间','注册年月']].head()
 



month_count = custom_info.groupby('注册年月')[['会员卡号']].count()
month_count.columns = ['月增量']
month_count.head()



用数据透视表实现相同功能:dataframe.pivot_table()


  • index:行索引,传入原始数据的列名
  • columns:列索引,传入原始数据的列名
  • values: 要做聚合操作的列名
  • aggfunc:聚合函数


custom_info.pivot_table(index = '注册年月',values = '会员卡号',aggfunc = 'count’)


计算存量 cumsum 对某一列 做累积求和 1 1+2 1+2+3 1+2+3+4 ...


#通过cumsum 对月增量做累积求和
month_count.loc[:,'存量'] = month_count['月增量'].cumsum()
month_count


可视化,需要去除第一个月数据


第一个月数据是之前所有会员数量的累积(数据质量问题)




由于会员等级跟消费金额挂钩,所以会员等级分布分析可以说明会员的质量


通过groupby实现,注册年月,会员等级,按这两个字段分组,对任意字段计数



分组之后得到的是multiIndex类型的索引,将multiIndex索引变成普通索引


custom_info.groupby(['注册年月','会员等级'])['会员卡号'].count().reset_index()
# 使得结果更美观


或使用unsatck:


custom_info.groupby(['注册年月','会员等级'])['会员卡号'].count().unstack()



使用透视表可以实现相同效果:





增量等级占比分析,查看增量会员的整体情况









Pandas透视表及应用(二)+https://developer.aliyun.com/article/1543896?spm=a2c6h.13148508.setting.14.1fa24f0exT0YLK

相关文章
|
1月前
|
存储 人工智能 自然语言处理
Pandas数据应用:自然语言处理
本文介绍Pandas在自然语言处理(NLP)中的应用,涵盖数据准备、文本预处理、分词、去除停用词等常见任务,并通过代码示例详细解释。同时,针对常见的报错如`MemoryError`、`ValueError`和`KeyError`提供了解决方案。适合初学者逐步掌握Pandas与NLP结合的技巧。
70 20
|
1月前
|
机器学习/深度学习 存储 算法
Pandas数据应用:客户流失预测
本文介绍如何使用Pandas进行客户流失预测,涵盖数据加载、预处理、特征工程和模型训练。通过解决常见问题(如文件路径错误、编码问题、列名不一致等),确保数据分析顺利进行。特征工程中创建新特征并转换数据类型,为模型训练做准备。最后,划分训练集与测试集,选择合适的机器学习算法构建模型,并讨论数据不平衡等问题的解决方案。掌握这些技巧有助于有效应对实际工作中的复杂情况。
142 95
|
1月前
|
机器学习/深度学习 数据采集 JSON
Pandas数据应用:机器学习预处理
本文介绍如何使用Pandas进行机器学习数据预处理,涵盖数据加载、缺失值处理、类型转换、标准化与归一化及分类变量编码等内容。常见问题包括文件路径错误、编码不正确、数据类型不符、缺失值处理不当等。通过代码案例详细解释每一步骤,并提供解决方案,确保数据质量,提升模型性能。
150 88
|
30天前
|
数据采集 存储 供应链
Pandas数据应用:库存管理
本文介绍Pandas在库存管理中的应用,涵盖数据读取、清洗、查询及常见报错的解决方法。通过具体代码示例,讲解如何处理多样数据来源、格式不一致、缺失值和重复数据等问题,并解决KeyError、ValueError等常见错误,帮助提高库存管理效率和准确性。
106 72
|
1月前
|
数据采集 存储 算法
Pandas数据应用:市场篮子分析
市场篮子分析是一种用于发现商品间关联关系的数据挖掘技术,广泛应用于零售业。Pandas作为强大的数据分析库,在此领域具有显著优势。本文介绍了市场篮子分析的基础概念,如事务、项集、支持度、置信度和提升度,并探讨了数据预处理、算法选择、参数设置及结果解释中的常见问题与解决方案,帮助用户更好地进行市场篮子分析,为企业决策提供支持。
70 29
|
29天前
|
数据采集 供应链 数据可视化
Pandas数据应用:供应链优化
在当今全球化的商业环境中,供应链管理日益复杂。Pandas作为Python的强大数据分析库,能有效处理库存、物流和生产计划中的大量数据。本文介绍如何用Pandas优化供应链,涵盖数据导入、清洗、类型转换、分析与可视化,并探讨常见问题及解决方案,帮助读者在供应链项目中更加得心应手。
50 21
|
28天前
|
机器学习/深度学习 搜索推荐 数据挖掘
Pandas数据应用:广告效果评估
在数字化营销中,广告效果评估至关重要。Pandas作为Python的强大数据分析库,在处理广告数据时表现出色。本文介绍如何使用Pandas进行广告效果评估,涵盖数据读取、预览、缺失值处理、数据类型转换及常见报错解决方法,并通过代码案例详细解释。掌握这些技能,可为深入分析广告效果打下坚实基础。
41 17
|
1月前
|
机器学习/深度学习 BI 定位技术
Pandas数据应用:用户细分
用户细分是数据分析和商业智能中的关键步骤,通过将用户群体划分为不同子集,企业可以更精准地了解用户需求并制定营销策略。Pandas 是 Python 中常用的数据处理库,支持高效的数据操作。使用 Pandas 进行用户细分包括数据准备、清洗、特征工程、细分和结果分析等步骤。常见问题如数据类型不一致、内存不足等可通过相应方法解决。Pandas 简化了用户细分流程,帮助获取有价值的洞察。
59 24
|
1月前
|
数据采集 存储 数据处理
Pandas数据应用:时间序列预测
本文介绍了使用 Pandas 进行时间序列预测的方法,涵盖时间序列的基础概念、特征(如趋势、季节性等),以及数据处理技巧(如创建时间序列、缺失值处理和平滑处理)。同时,文章详细讲解了简单线性回归和 ARIMA 模型的预测方法,并针对常见问题(如数据频率不一致、季节性成分未处理)及报错提供了解决方案。通过这些内容,读者可以掌握时间序列预测的基本步骤和技巧。
63 27
|
1月前
|
机器学习/深度学习 数据采集 供应链
Pandas数据应用:销售预测
本文介绍如何使用Pandas进行销售预测。首先,通过获取、清洗和可视化历史销售数据,确保数据质量并理解其特征。接着,进行特征工程,构建线性回归等模型进行预测,并评估模型性能。最后,针对常见问题如数据类型不匹配、时间格式错误、内存不足和模型过拟合提供解决方案。掌握这些步骤,可有效提升销售预测的准确性,助力企业优化库存管理和提高客户满意度。
55 17