[计算机网络]深度学习传输层TCP协议

简介: [计算机网络]深度学习传输层TCP协议

前提概括

TCP全称为"传输控制协议(Transmission Control Protocol"),要对数据的传输进行⼀个详细的控制;

端口号(Port):标识了⼀个主机上进行通信的不同的应用程序;

端口号范围划分

  • 0-1023:知名端口号,HTTP,FTP,SSH等这些广为使用的应用层协议,他们的端口号都是固定的.
  • 1024-65535:操作系统动态分配的端口号.客户端程序的端口号,就是由操作系统从这个范围分配 的.

一: TCP协议段格式

源/目的端⼝号:表示数据是从哪个进程来,到哪个进程去;

  • 32位序号/32位确认号:意思是告诉发送者,我已经收到了哪些数据;
  • 4位TCP报头长度:表示该TCP头部有多少个32位bit(有多少个4字节);所以TCP头部最大长度是15* 4=60
  • 6位标志位:
  1. URG:紧急指针是否有效
  2. ACK:确认号是否有效
  3. PSH:提⽰接收端应⽤程序⽴刻从TCP缓冲区把数据读⾛
  4. RST:对⽅要求重新建⽴连接;我们把携带RST标识的称为复位报⽂段
  5. SYN:请求建⽴连接;我们把携带SYN标识的称为同步报⽂段
  6. FIN:通知对⽅,本端要关闭了,我们称携带FIN标识的为结束报⽂段
  • 16位窗口大小:一次传输数据的容量大小
  • 16位校验和:发送端填充,CRC校验.接收端校验不通过,则认为数据有问题.此处的检验和不光包含TCP首部,也包含TCP数据部分.
  • 16位紧急指针:标识哪部分数据是紧急数据;


二:确认应答

TCP将每个字节的数据都进行了编号.即为序列号.

每⼀个ACK都带有对应的确认序列号,意思是告诉发送者,我已经收到了哪些数据;下⼀次你从哪里开始

发.


三:超时重传

  • 主机A发送数据给B之后,可能因为网络拥堵等原因,数据无法到达主机B;
  • 如果主机A在⼀个特定时间间隔内没有收到B发来的确认应答,就会进行重发;

但是,主机A未收到B发来的确认应答,也可能是因为ACK丢失了;

因此主机B会收到很多重复数据.那么TCP协议需要能够识别出那些包是重复的包,并且把重复的丢弃掉.

这时候我们可以利用前⾯提到的序列号,就可以很容易做到去重的效果.


四:连接管理

在正常情况下,TCP要经过三次握手建立连接,四次挥手断开连接

建力连接的意义:

  1. 确认当前通信路径是否畅通.
  2. 协商参数,通信双方共同确认⼀些通信中的必备参数数值.
  3. 验证通信双方的发送和接收能力是否正常


五:流量控制

接收端处理数据的速度是有限的.如果发送端发的太快,导致接收端的缓冲区被打满,这个时候如果发送

端继续发送,就会造成丢包,继而引起丢包重传等等⼀系列连锁反应.

  • 因此TCP支持根据接收端的处理能力,来决定发送端的发送速度.这个机制就叫做流量控制(Flow Control);
  • 接收端将自己可以接收的缓冲区大小放⼊TCP首部中的"窗口大小"字段,通过ACK端通知发送端;
  • 窗口大小字段越大,说明网络的吞吐量越高;
  • 接收端⼀旦发现自己的缓冲区快满了,就会将窗口大小设置成⼀个更小的值通知给发送端;
  • 发送端接受到这个窗⼝之后,就会减慢自己的发送速度;
  • 如果接收端缓冲区满了,就会将窗口置为0;这时发送方不再发送数据,但是需要定期发送⼀个窗⼝探 测数据段,使接收端把窗口大小告诉发送端.

接收端如何把窗口大小告诉发送端呢?回忆我们的TCP首部中,有⼀个16位窗⼝字段,就是存放了窗⼝大小信息


六:拥塞控制

TCP引入慢启动机制,先发少量的数据,探探路,摸清当前的网络拥堵状态,再决定按照多大的速度传输

数据;

此处引入⼀个概念程为拥塞窗口

  • 发送开始的时候,定义拥塞窗口大小为1;
  • 每次收到⼀个ACK应答,拥塞窗⼝加1;
  • 每次发送数据包的时候,将拥塞窗⼝和接收端主机反馈的窗口大小做比较,取较小的值作为实际发送 的窗口;

像上面这样的拥塞窗⼝增长速度,是指数级别的."慢启动"只是指初使时慢,但是增⻓速度⾮常快.

  • 为了不增⻓的那么快,因此不能使拥塞窗口单纯的加倍.
  • 此处引⼊⼀个叫做慢启动的阈值
  • 当拥塞窗口超过这个阈值的时候,不再按照指数方式增长,而是按照线性方式增长
  • 当TCP开始启动的时候,慢启动阈值等于窗⼝最大值
  • 在每次超时重发的时候,慢启动阈值会变成原来的⼀半,同时拥塞窗⼝置回1;

少量的丢包,我们仅仅是触发超时重传;大量的丢包,我们就认为网络拥塞;

当TCP通信开始后,网络吞吐量会逐渐上升;随着网络发生拥堵,吞吐量会立刻下降;

拥塞控制,归根结底是TCP协议想尽可能快的把数据传输给对方,但是又要避免给网络造成太大压力的折中方案.


七:滑动窗口

刚才我们讨论了确认应答策略,对每⼀个发送的数据段,都要给⼀个ACK确认应答.收到ACK后再发送下

⼀个数据段.这样做有⼀个比较大的缺点,就是性能较差.尤其是数据往返的时间较长的时候.既然这样⼀发⼀收的⽅式性能较低,那么我们⼀次发送多条数据,就可以大大的提高性能(其实是将多个段的等待时间重叠在⼀起了).

窗口大小指的是无需等待确认应答而可以继续发送数据的最⼤值.上图的窗口大小就是4000个字节(四个段).

  • 发送前四个段的时候,不需要等待任何ACK,直接发送;
  • 收到第⼀个ACK后,滑动窗⼝向后移动,继续发送第五个段的数据;依次类推;
  • 操作系统内核为了维护这个滑动窗⼝,需要开辟发送缓冲区来记录当前还有哪些数据没有应答;只 有确认应答过的数据,才能从缓冲区删掉;
  • 窗口越大,则网络的吞吐率就越高;

那么如果出现了丢包,如何进行重传?这里分两种情况讨论.

情况⼀:数据包已经抵达,ACK被丢了.

这种情况下,部分ACK丢了并不要紧,因为可以通过后续的ACK进行确认;

情况⼆:数据包就直接丢了

  • 当某⼀段报文段丢失之后,发送端会⼀直收到1001这样的ACK,就像是在提醒发送端"我想要的是 1001"⼀样;
  • 如果发送端主机连续三次收到了同样⼀个"1001"这样的应答,就会将对应的数据1001-2000重新发送;
  • 这个时候接收端收到了1001之后,再次返回的ACK就是7001了(因为2001-7000)接收端其实之前就
    已经收到了,被放到了接收端操作系统内核的接收缓冲区中;

这种机制被称为"高速重发控制"(也叫"快重传").


八:延迟应答

如果接收数据的主机立刻返回ACK应答,这时候返回的窗口可能比较小.

  • 假设接收端缓冲区为1M.⼀次收到了500K的数据;如果立刻应答,返回的窗⼝就是500K;
  • 但实际上可能处理端处理的速度很快,10ms之内就把500K数据从缓冲区消费掉了;
  • 在这种情况下,接收端处理还远没有达到自己的极限,即使窗口再放大一些,也能处理过来;
  • 如果接收端稍微等⼀会再应答,比如等待200ms再应答,那么这个时候返回的窗口大小就是1M;

⼀定要记得,窗⼝越大,网络吞吐量就越大,传输效率就越高.我们的目标是在保证网 络不拥塞的情况下

尽量提高传输效率;


九:捎带应答

在延迟应答的基础上,我们发现,很多情况下,客户端服务器在应用层也是"⼀发⼀收"的.意味着客户端给服务器说了"How are you",服务器也会给客⼾端回⼀个"Fine,thank you";那么这个时候ACK就可以搭顺风车,和服务器回应的"Fine,thank you"⼀起回给客户端


TCP小结

为什么TCP这么复杂?因为要保证可靠性,同时又尽可能的提高性能.

可靠性:

  • 确认应答
  • 超时重发
  • 连接管理
  • 流量控制
  • 拥塞控制

提高性能:

  • 滑动窗口
  • 快速重传
  • 延迟应答
  • 捎带应答

其他:

  • 定时器(超时重传定时器,定时器,TIME_WAIT定时器等)

    如果觉得文章不错,期待你的一键三连哦,你个鼓励是我创作的动力之源,让我们一起加油,顶峰相见!!!💓 💓 💓
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
6月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
641 55
|
16天前
|
安全 网络协议 Linux
Linux网络应用层协议展示:HTTP与HTTPS
此外,必须注意,从HTTP迁移到HTTPS是一项重要且必要的任务,因为这不仅关乎用户信息的安全,也有利于你的网站评级和粉丝的信心。在网络世界中,信息的安全就是一切,选择HTTPS,让您的网站更加安全,使您的用户满意,也使您感到满意。
58 18
|
4月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
267 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
2月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
69 8
|
2月前
|
安全 网络安全 定位技术
网络通讯技术:HTTP POST协议用于发送本地压缩数据到服务器的方案。
总的来说,无论你是一名网络开发者,还是普通的IT工作人员,理解并掌握POST方法的运用是非常有价值的。它就像一艘快速,稳定,安全的大船,始终为我们在网络海洋中的冒险提供了可靠的支持。
98 22
|
2月前
|
网络协议 数据安全/隐私保护 网络架构
|
3月前
|
缓存 网络协议 API
掌握网络通信协议和技术:开发者指南
本文探讨了常见的网络通信协议和技术,如HTTP、SSE、GraphQL、TCP、WebSocket和Socket.IO,分析了它们的功能、优劣势及适用场景。开发者需根据应用需求选择合适的协议,以构建高效、可扩展的应用程序。同时,测试与调试工具(如Apipost)能助力开发者在不同网络环境下优化性能,提升用户体验。掌握这些协议是现代软件开发者的必备技能,对项目成功至关重要。
|
3月前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
3月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
217 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
3月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。