野生的Python装饰器案例

简介: 野生的Python装饰器案例

装饰器案例

下面介绍了三种装饰器的真实应用场景。

  1. 拦截调用:在函数运行前拦截,进行检查
  2. 函数注册存储函数的引用以便在后面使用。通常用于事件系统、模式匹配、路由等。
  3. 增强函数功能:增强函数的功能。比如显示函数执行时间。

拦截调用

在函数执行前对函数进行检查。

标准库的functools.cache实现了函数缓存的功能。在函数第一次执行时,会正常执行。在函数使用相同参数执行第二次时,检测到函数已经执行过,会跳过执行函数,直接返回缓存值。

from functools import cache
@cache
def expensive_function(a, b):
    print("The expensive function runs")
    return a + b


expensive_function(1, 2)  # 第一次运行
expensive_function(1, 2)  # 相同参数第二次,函数不会执行

运行结果,函数只执行了一次:

The expensive function runs

这种思路在许多流行的框架经常出现:

  1. Django使用装饰器验证用户是否通过身份验证。如果通过验证,则返回正常的网页;否则返回登陆页面。
from django.contrib.auth.decorators import login_required
@login_required
def my_view(request): ...

# https://docs.djangoproject.com/en/5.0/topics/auth/default/#the-login-required-decorator
  1. 验证库 pydantic 提供了一个装饰器来检查函数输入。如果输入与类型提示匹配,则运行原始函数。如果没有,pydantics 会引发错误。
  1. call-throttle 是一个用于速率限制代码的库,它允许您将函数限制为每秒调用的次数。如果达到限制,则原始函数根本不会运行。下面是一个简化的实现:
import time
import functools

def basic_throttle(calls_per_second):
    def decorator(func):

        last_called = 0.0
        count = 0

        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            nonlocal last_called, count
            current_time = time.time()

            # Reset counter if new second
            if current_time - last_called >= 1:
                last_called = current_time
                count = 0

            # Enforce the limit
            if count < calls_per_second:
                count += 1
                return func(*args, **kwargs)

            return None

        return wrapper
    return decorator
>>> @basic_throttle(5)
... def send_alert():
...     print(f"Alert !")
...
... for i in range(10):
...     send_alert()
...     time.sleep(0.1)
...
Alert !
Alert !
Alert !
Alert !
Alert !

注册函数

存储函数的引用以便在后面使用。通常用于事件系统、模式匹配、路由等。

  1. doit-api 提供 decorar 来注册 doit 任务。如果从与其名称匹配的命令行运行任务,则稍后会调用修饰函数。
  1. Flask 的路由将 URL 路径与终结点相关联。当用户浏览 URL 时,关联的函数会生成网页。
@app.route('/')
def index():
    return 'Index Page'

@app.route('/hello')
def hello():
    return 'Hello, World'
  1. pytest 允许您使用装饰器定义夹具(fixtures)。如果编写带有夹具函数名称的测试参数,则会自动调用该参数,并将结果注入测试中。
import pytest


class Fruit:
    def __init__(self, name):
        self.name = name

    def __eq__(self, other):
        return self.name == other.name


@pytest.fixture
def my_fruit():
    return Fruit("apple")


@pytest.fixture
def fruit_basket(my_fruit):
    return [Fruit("banana"), my_fruit]


def test_my_fruit_in_basket(my_fruit, fruit_basket):
    assert my_fruit in fruit_basket

增强函数功能

我们希望让函数更强大一些,比如显示函数执行时间。

  1. tenacity 的装饰器将函数设置为在失败时重试。您可以指定异常、失败次数、重试前的延迟以及各种策略。对于自然会出现暂时性错误(如网络调用)的操作很有用。
  1. Fabric 使用装饰器来配置部署,例如告诉函数应在哪个主机上运行。然后,代码将在远处的计算机上运行,而不是在您的计算机上运行。
@hosts('user1@host1', 'host2', 'user2@host3')
def my_func():
    pass

相关文章
|
1月前
|
开发者 Python
探索Python中的装饰器:从基础到高级应用
本文将带你深入了解Python中的装饰器,这一强大而灵活的工具。我们将一起探讨装饰器的基本概念,它们如何工作,以及如何使用它们来增强函数和类的功能,同时不改变其核心逻辑。通过具体代码示例,我们将展示装饰器的创建和使用,并探索一些高级应用,比如装饰器堆栈和装饰带参数的装饰器。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角,帮助你更有效地使用装饰器来简化和优化你的代码。
|
1月前
|
测试技术 数据安全/隐私保护 开发者
探索Python中的装饰器:从基础到高级应用
装饰器在Python中是一个强大且令人兴奋的功能,它允许开发者在不修改原有函数代码的前提下增加额外的功能。本文将通过具体代码示例,带领读者从装饰器的基础概念入手,逐步深入到高级用法,如带参数的装饰器和装饰器嵌套等。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。
|
1月前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
37 6
|
22天前
|
缓存 数据安全/隐私保护 Python
python装饰器底层原理
Python装饰器是一个强大的工具,可以在不修改原始函数代码的情况下,动态地增加功能。理解装饰器的底层原理,包括函数是对象、闭包和高阶函数,可以帮助我们更好地使用和编写装饰器。无论是用于日志记录、权限验证还是缓存,装饰器都可以显著提高代码的可维护性和复用性。
31 5
|
1月前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
39 7
|
1月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
1月前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
49 6
|
1月前
|
存储 缓存 Python
Python中的装饰器深度解析与实践
在Python的世界里,装饰器如同一位神秘的魔法师,它拥有改变函数行为的能力。本文将揭开装饰器的神秘面纱,通过直观的代码示例,引导你理解其工作原理,并掌握如何在实际项目中灵活运用这一强大的工具。从基础到进阶,我们将一起探索装饰器的魅力所在。
|
1月前
|
测试技术 开发者 Python
深入理解Python装饰器:从基础到高级应用
本文旨在为读者提供一个全面的Python装饰器指南,从其基本概念讲起,逐步深入探讨其高级应用。我们将通过实例解析装饰器的工作原理,并展示如何利用它们来增强函数功能、控制程序流程以及实现代码的模块化。无论你是Python初学者还是经验丰富的开发者,本文都将为你提供宝贵的见解和实用的技巧,帮助你更好地掌握这一强大的语言特性。
38 4
|
1月前
|
开发者 Python
Python中的装饰器:从入门到实践
本文将深入探讨Python的装饰器,这一强大工具允许开发者在不修改现有函数代码的情况下增加额外的功能。我们将通过实例学习如何创建和应用装饰器,并探索它们背后的原理和高级用法。
44 5