【决策树】一文看懂图解决策树原理:信息熵、条件熵与信息增益

简介: 【决策树】一文看懂图解决策树原理:信息熵、条件熵与信息增益


本文用过图解的方式并结合实际案例的方式讲述了决策树的基本原理,主要包含信息熵、条件熵与信息增益的概念与计算方式,以及如何选择各个决策节点即:选择信息增益最大的特征)

想要PDF文档的小伙伴,通过关注GZH:阿旭算法与机器学习,回复:“决策树”即可获取。

重要结论

1.信息熵用来衡量信息的不确定性或者混乱程度的;

2.信息的不确定性越大熵越大;

3.决策树每个节点的选择,选择信息增益最大的特征;

相关文章
|
机器学习/深度学习 数据可视化 算法
泰酷辣!探索七种常用的机器学习图型
泰酷辣!探索七种常用的机器学习图型
1516 0
|
机器学习/深度学习 人工智能 项目管理
【机器学习】集成学习——Stacking模型融合(理论+图解)
【机器学习】集成学习——Stacking模型融合(理论+图解)
6398 1
【机器学习】集成学习——Stacking模型融合(理论+图解)
|
机器学习/深度学习 搜索推荐 算法
【王喆-推荐系统】模型篇-(task5)wide&deep模型
Wide&Deep是工业界中有巨大影响力的模型,如果直接翻译成中文是宽和深的模型,其模型结构如下所示:wide和deep让模型兼具逻辑回归和深度神经网络的特点。
2163 0
【王喆-推荐系统】模型篇-(task5)wide&deep模型
|
机器学习/深度学习 监控 TensorFlow
使用Python实现深度学习模型:智能农业病虫害检测与防治
使用Python实现深度学习模型:智能农业病虫害检测与防治
630 65
|
机器学习/深度学习 算法 数据可视化
决策树算法介绍:原理与案例实现
决策树算法介绍:原理与案例实现
|
机器学习/深度学习 资源调度 自然语言处理
长短时记忆网络(LSTM)完整实战:从理论到PyTorch实战演示
长短时记忆网络(LSTM)完整实战:从理论到PyTorch实战演示
18654 0
|
人工智能 算法 数据可视化
DBSCAN密度聚类算法(理论+图解+python代码)
DBSCAN密度聚类算法(理论+图解+python代码)
6809 1
|
机器学习/深度学习 自然语言处理 PyTorch
Transformers入门指南:从零开始理解Transformer模型
【10月更文挑战第29天】作为一名机器学习爱好者,我深知在自然语言处理(NLP)领域,Transformer模型的重要性。自从2017年Google的研究团队提出Transformer以来,它迅速成为NLP领域的主流模型,广泛应用于机器翻译、文本生成、情感分析等多个任务。本文旨在为初学者提供一个全面的Transformers入门指南,介绍Transformer模型的基本概念、结构组成及其相对于传统RNN和CNN模型的优势。
12490 1
|
机器学习/深度学习 存储 人工智能
【机器学习】GBDT (Gradient Boosting Decision Tree) 深入解析
GBDT,全称为Gradient Boosting Decision Tree,即梯度提升决策树,是机器学习领域中一种高效且强大的集成学习方法。它通过迭代地添加决策树以逐步降低预测误差,从而在各种任务中,尤其是回归和分类问题上表现出色。本文将深入浅出地介绍GBDT的基本原理、算法流程、关键参数调整策略以及其在实际应用中的表现与优化技巧。
4052 2

热门文章

最新文章