机器学习 - 决策树中,信息增益、信息增益率计算以及最佳特征挑选的Python实现

简介: 本文介绍决策树中,信息增益、信息增益率计算以及最佳特征挑选的Python实现

信息增益、信息增益率计算 以及 最佳特征挑选 的Python实现


李俊才 的个人博客

已入驻阿里云博客

邮箱 :291148484@163.com
本文地址
- https://developer.aliyun.com/article/
- https://blog.csdn.net/qq_28550263/article/details/114891368

阅读本文前推荐先阅读:混杂度数值度量的Python编程实现https://blog.csdn.net/qq_28550263/article/details/114883862

阅读本文前推荐先阅读:决策树算法中数据集的划分https://blog.csdn.net/qq_28550263/article/details/114892718

导读:决策树是一种基于信息的学习算法。在决策树算法中需要不断地挑选出最佳特征,而挑选最佳特征地依据就是信息增益率

增益本身就具有相对地特性,表征某事物从一个状态到另一个状态后,某个指标的变化量。

在决策树算法中,信息增益指的是依据某个特征的取值划分数据集时数据集划分后相对于划分前,所能导致减少的信息不确定度

这也就是说信息增益即不确定度的降低值。当我们以信息熵(香浓熵,简称)作为不确定性的度量时,以数据集划分前的原始熵减去数据集划分后的剩余熵得到的值就是信息增益


【博文1】在我的博文https://blog.csdn.net/qq_28550263/article/details/114892718中已经详尽地介绍了数据集划分的思路、步骤,给出了源代码并举了两个例子。


【博文2】在我的博文https://blog.csdn.net/qq_28550263/article/details/114883862中,则给出了不确定度的计算方法,其中就包含了基于信息熵(香浓熵)的计算方法和基尼系数的计算方法。


对于以上内容我们都将用到。


目 录


1. 求解信息增益

2. 使用信息增益存在的问题与信息增益率

3. 基于信息增益率的最佳特征挑选


1. 求解信息增益

1.1 已经准备好的接口

(1)划分数据集函数(仅展示接口,具体内容请参阅【博文1】

defdividing_data_set(date_set,node_feature,node_feature_value):
"""    划分数据集    整个划分方法的思想是"记录索引-重索引"。简而言之就是先记住特征取值为指定取值的索引号,然    后依据记录索引号保对其它特征下同索引号的元素进行保留。最终实现留下当前划分数据条的目的。    Parameters    ----------    date_set: "dict"结构的数据集,其中键为”labels“的键值对对应为标签集(源于x_train),其余               的对应为特征取值键值对(源于y_train)。    node_feature:可以是num、str等类型,但是必须和date_set中的键的类型保持一致。表示需要划分               数据集的节点处对应的特征名。    node_feature_value:是对应与 node_feature 的一个特定取值。    Returns    -------    result : dict        返回子数据集字典,其形式与date_set保持一致。其中键`labels`对应的值类似是子标签集数组。    """

(2)混杂度求取函数(仅展示接口,具体内容请参阅【博文2】

defimpurity(anArray, impurity_t="entropy"):
"""    计算混杂度    Parameters    ----------    impurity_t:  str,表示混杂度的度量方式,只能是{"entropy","gini"}中的一个。    anArray:     an Array like object,由某特征依次对应每条数据下的取值构成。    Return    result: float        为计算得到的impurity的数值。    """

1.2 使用实例讲解

这里采用【博文1】中的例子:

importnumpyasnp# 定义模拟数据x_train=np.array([[1, 4, 2, 0, 3, 1, 1, 0, 1, 4, 2, 4, 4, 2, 4, 2, 0, 2, 2, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 3, 1, 3, 1, 3, 1, 1, 0, 1, 4, 3, 4, 4, 2],
       [0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 3, 0, 3, 1, 1, 0, 0, 4, 2, 2, 4, 1, 1, 0, -1, 0, 4, 0, -1, -1, 0, 0, 0, 0, 0, 0, 2],
       [4, 2, 2, 3, 1, 2, 1, 1, 0, 2, 1, 1, 1, 0, 3, 0, 3, 2, 2, 0, 0, 0, 0, 3, 1, 1, 2, 3, 4, 3, 1, 1, 3, 1, 2, 1, 1, 0, 1, 2, 2, 1, 0],
       [1, 4, 2, 2, 3, 1, 1, 0, 0, 2, 1, 1, 1, 0, 3, 4, 2, 2, 4, 1, 0, 1, 0, 3, 2, 2, 4, 3, 1, 2, -1, 2, 2, 1, 0, 1, -1, 0, 1, 1, 1, 0, 0],
       [1, 2, 2, 1, 3, 1, 1, 0, 0, 2, 2, 1, 1, 0, 0, 4, 1, 2, 1, 0, 0, 0, 0, 2, 1, 1, 2, 3, 3, 0, -1, 2, 1, 3, 1, 1, 0, 0, 2, 3, 2, 1, 0],
       [1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 3, 3, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 2, 4, 2, 2, -1, 2, 2, 3, 0, 0, 0, 0, 2, 2, 2, 2, 0],
       [1, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 3, 2, 1, 1, 0, 2, 2, 1, 0, 3, 3, 2, 1, 1, 3, 0, -2, -1, -1, 0, 1, 0, 2, 2, 1],
       [0, 0, 3, 3, 2, 0, 0, 0, 0, 3, 3, 3, 0, 2, 1, 3, 3, 3, 2, 1, 1, 0, 0, 3, 4, 4, 1, 2, 1, 0, 1, 2, 2, 1, -1, -1, 0, 0, 2, 1, 2, 1, 2],
       [2, 4, 2, 0, 2, 1, 0, 1, 0, 2, 2, 3, 4, 2, 2, 3, 0, 2, 0, 1, 1, 0, 0, 0, 3, 3, 0, 4, 2, 2, 1, 3, 1, 4, 0, -1, 1, 0, 3, 1, 2, 4, 0],
       [1, 4, 1, 0, 1, 0, 0, 0, 0, 3, 2, 3, 3, 4, 4, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 1, 4, 2, 0, 4, 1, 3, 1, 3, -1, 0, -1, 0, 3, 2, 3, 2, 3]],)
y_train=np.array([1, 0, 0, 1, 0, 0, 1, 0, 0, 1]) 
features= ["feature_"+str(i) foriinrange(43)]  # 产生43个不同的特征名字# 转换为数据集字典date_set=dict(zip(features,x_train.T))
date_set.update({"labels":y_train})      # 将标签集(labels,也就是输出y们)也加入数据集

在【博文1】中,我们是假设了"feature_13"最为node_feature,也就是第一个”最佳特征“。但是当时只是假设的,并不是计算得出。到了本文,我的的任务就是要算出所有节点划分数据集前后的信息增益,取其最大者为真实的最佳特征。

不过我们仍然可以以"feature_13"为例,计算"feature_13"在划分前后的信息增益。

1.3 信息增益计算的实现

计算数据集划分前labels的熵作为划分前的熵,数据集划分后各个子数据集labels熵的和作为数据集划分后的熵。以此直接求取信息增益。

defgain(impurity_t, impurity_before_divide, data_set, probable_feature):
"""    计算信息增益    需要传入数据集划分前的不纯度、划分数据集所依赖特征对应的取值数组。考虑到在同一个节点测试不同子特征增益时都有用    到划分前的不纯度,为了提升运行效率故在gain()外计算好该节点分裂前的不纯度后再传入gain()函数。其中数据集划分前的    熵就是划分前的标签集labels的熵。其中按某特征划分后的不确定度,为依该特征各个取值划分的子数据集的中的标签集(即    该特征划分完后所有的子标签集)的不确定度总和。    Parameters    ----------    impurity_t:              str,不纯度的度量方式,只能是{"entropy","gini"}中的一个。    impurity_before_divide:  float,表示数据集划分前的不纯度。                data_set:               dict,划分前的数据集。    probable_feature:        str,用于划分数据集的特征。    Return    ------    result:      float,表征信息增益值。    """impurity_after_divide=0# 初始化数据集划分后的不存度为0forvalueinset(date_set[probable_feature]):         # 获取该特征所有的取值并使用集合去重,遍历之one_sublabel_array=dividing_data_set(           # 获取该子数据集中的标签集数组date_set=date_set, 
node_feature=probable_feature,
node_feature_value=value        )['labels']
impurity_after_divide=impurity(one_sublabel_array,impurity_t) # 累加每个子数据标签集的不存度returnimpurity_before_divide-impurity_after_divide# 做差得到这个特征的增益并返回impurity_t="entropy"# 使用信息熵度量混杂度              impurity_before_divide=impurity(date_set["labels"],impurity_t)     # 数据集划分前labels的混杂度probable_feature="feature_13"# 假设当前划分数据集用该特征gain(impurity_t, impurity_before_divide, date_set, probable_feature)

Out[i]: 0.9709505944546686

2. 使用信息增益存在的问题与信息增益率

由于取值越连续则不确定度越大,直接使用信息增益往往容易导致取值数量越多的特征则越容易被挑选出来。为了平衡特征取值趋于连续带来的影响,我们使用信息增益率作为信息增益的替代方案以选取最佳特征。

改为求解信息增益率的算法如下:

defgain_rate(impurity_t, impurity_before_divide, data_set, probable_feature):
"""    计算信息增益率    相对于信息增益的计算,信息增益率还要求解出由于该特征的不同取值带来的不确度。     - 若由于特征取值带来的不确定度为0,说明无特征取值连续化影响,直接返回信息增益;     - 若特征取值带来的不确定度不是0,则使用信息增益除以特征取证带来的不确定度。    Parameters    ----------    impurity_t:              str,不纯度的度量方式,只能是{"entropy","gini"}中的一个。    impurity_before_divide:  float,表示数据集划分前的不纯度。                data_set:               dict,划分前的数据集。    probable_feature:        str,用于划分数据集的特征。    Return    ------    result:      float,表征信息增益值。    """impurity_after_divide=0# 初始化数据集划分后的不存度为0forvalueinset(date_set[probable_feature]):         # 获取该特征所有的取值并使用集合去重,遍历之one_sublabel_array=dividing_data_set(           # 获取该子数据集中的标签集数组date_set=date_set, 
node_feature=probable_feature,
node_feature_value=value        )['labels']
impurity_after_divide=impurity(one_sublabel_array,impurity_t)     # 累加每个子数据标签集的不存度gain=impurity_before_divide-impurity_after_divide# 做差得到这个特征的增益feature_impurity=impurity(data_set[probable_feature],impurity_t)
gain_rate=gain/feature_impurityiffeature_impurity>0elsegainreturngain_rateimpurity_t="entropy"# 使用信息熵度量混杂度              impurity_before_divide=impurity(date_set["labels"],impurity_t)     # 数据集划分前labels的混杂度probable_feature="feature_13"# 假设当前划分数据集用该特征gain_rate(impurity_t, impurity_before_divide, date_set, probable_feature)

Out[i]:0.7134285408041596


3. 基于信息增益率的最佳特征挑选

这是本节最为简单的部分了,需要完成的工作包括:

  • 获取当前节点处所有的特征;
  • 依次假设每一个特征就是当前节点处分裂的最佳特征,划分数据集从而计算出这些特征各自再划分前后的信息增益率;
  • 比较:选取上一步中,实际划分前后信息增益率最大者作为当前节点处的最佳特征返回之。

实现代码如下:

defbest_feature(impurity_t,date_set):
"""    求取节点处的最佳特征    Parameters    ----------    date_set:    dict,与某个节点处的对应的数据集    Return    ------    result:     str,数据集date_set所属节点处可用于分裂的最佳特征    """features= [iforiindate_setifi!="labels"]                   # 获取数据集中当前节点处所有特征impurity_before_divide=impurity(date_set["labels"],impurity_t)    # 数据集划分前labels的混杂度max_gain_rate=-1# 不会小于0,因此随便给个负数初始值the_best_feature=""forprobable_featureinfeatures:
rate=gain_rate(impurity_t, impurity_before_divide, date_set, probable_feature)
ifrate>max_gain_rate:
max_gain_rate=ratethe_best_feature=probable_featurereturnthe_best_featureimpurity_t="entropy"best_feature(impurity_t,date_set)

Out[i]:‘feature_8’

目录
打赏
0
0
0
0
332
分享
相关文章
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
77 7
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
Python与机器学习:使用Scikit-learn进行数据建模
本文介绍如何使用Python和Scikit-learn进行机器学习数据建模。首先,通过鸢尾花数据集演示数据准备、可视化和预处理步骤。接着,构建并评估K近邻(KNN)模型,展示超参数调优方法。最后,比较KNN、随机森林和支持向量机(SVM)等模型的性能,帮助读者掌握基础的机器学习建模技巧,并展望未来结合深度学习框架的发展方向。
58 9
Python与机器学习:使用Scikit-learn进行数据建模
一文归纳Python特征生成方法(全)
创造新的特征是一件十分困难的事情,需要丰富的专业知识和大量的时间。机器学习应用的本质基本上就是特征工程。 ——Andrew Ng
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
10天前
|
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
23 4
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化和调试技巧,涵盖使用内置函数、列表推导式、生成器、`cProfile`、`numpy`等优化手段,以及`print`、`assert`、`pdb`和`logging`等调试方法。通过实战项目如优化排序算法和日志记录的Web爬虫,帮助你编写高效稳定的Python程序。

热门文章

最新文章