R语言多项式回归拟合非线性关系

简介: R语言多项式回归拟合非线性关系

多项式回归是x自变量和y因变量之间的非线性关系。

当我们分析有一些弯曲的波动数据时,拟合这种类型的回归是很关键的。

在这篇文章中,我们将学习如何在R中拟合和绘制多项式回归数据。我们在这个回归模型中使用了lm()函数。虽然它是一个线性回归模型函数,但通过改变目标公式类型,lm()对多项式模型也适用。本教程包括

  1. 准备数据
  2. 拟合模型
  3. 寻找最佳拟合
  4. 源代码

准备数据

我们首先要准备测试数据,如下所示。

function(x) x^3+2*x^2+5
 
df = data.frame(x = x, y = y)
head(df)

我们可以将'df'数据可视化,在图中进行直观的检查。我们的任务是用最佳曲线拟合这个数据。

plot(df$x, df$y

拟合模型

我们用lm()函数建立一个带有公式的模型。  I(x^2)在一个公式中代表x2。我们也可以使用poly(x,2)函数,它与I(x^2)的表达方式相同。

接下来,我们将用训练好的模型来预测数据。

pred = predict(model,data=df)

寻找最佳拟合

找到最佳拟合的曲线很重要。我们用各种可能的函数检查模型。在这里,我们应用四种类型的函数进行拟合,并检查其性能。

橙色线(线性回归)和黄色曲线对这个数据来说是错误的选择。粉红色曲线很接近,但蓝色曲线是与我们的数据趋势最匹配的。因此,我使用y~x3+x2公式来建立我们的多项式回归模型。

你可以通过将你的数据可视化来找到最适合的公式。

源代码列在下面。

lines(df$x, predict(lm(y~x, data=df)), type="l"  lwd=2)
 
legend("topleft", 
        legend = c("y~x,  - 线性","y~x^2", "y~x^3", "y~x^3+x^2"),

绘制结果

1. 用plot()函数作图。

2. 用ggplot()作图。

多项式回归数据可以用ggplot()拟合和绘制。

ggplot(data=df ) +
       geom_smooth(  y~I(x^3)+I(x^2))

在本教程中,我们简要了解了如何拟合多项式回归数据,并使用R中的plot()和ggplot()函数绘制结果,完整的源代码如下。


相关文章
|
6月前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
6月前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
6月前
|
数据可视化
【R语言实战】——金融时序分布拟合
【R语言实战】——金融时序分布拟合
|
6月前
|
数据可视化
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码2
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
6月前
|
数据可视化 数据挖掘
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码1
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
6月前
|
前端开发 数据可视化
R语言广义线性混合模型(GLMM)bootstrap预测置信区间可视化
R语言广义线性混合模型(GLMM)bootstrap预测置信区间可视化
|
6月前
|
存储 数据采集 数据可视化
R语言拟合线性混合效应模型、固定效应随机效应参数估计可视化生物生长、发育、繁殖影响因素
R语言拟合线性混合效应模型、固定效应随机效应参数估计可视化生物生长、发育、繁殖影响因素
|
6月前
|
机器学习/深度学习 数据可视化 算法
R语言拟合改进的稀疏广义加性模型(RGAM)预测、交叉验证、可视化
R语言拟合改进的稀疏广义加性模型(RGAM)预测、交叉验证、可视化
|
6月前
|
安全 vr&ar
R语言非线性动态回归模型ARIMAX、随机、确定性趋势时间序列预测个人消费和收入、用电量、国际游客数量
R语言非线性动态回归模型ARIMAX、随机、确定性趋势时间序列预测个人消费和收入、用电量、国际游客数量
|
6月前
|
机器学习/深度学习 数据可视化
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(下)
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享