*MYSQL--索引--内部原理

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: *MYSQL--索引--内部原理

MYSQL的索引根据功能,主要有三大类型:

1.HASH索引

2.二叉树

3.BTREE索引


一:HASH索引

1.内部原理:

在设置了某列为索引列之后,并且开始或者将要在相应索引列创建数据的时候,系统通过某种算法  F(X) 自动计算出来一个十六进制的哈希值,这个哈希值能够对应相应的字段值   所以,在之后如果使用HASH查询的时候,可以直接通过计算索引值在刚开始创建时所得的哈希值,通过这个哈希值再对应相应的索引值,达到直接搜索的目的,而不是再全表搜索,大大提高了搜索效率

2.优点:

       通过字段值计算出相应的HASH值,定位数据,搜索数据非常的快,但是也要注意一点,不同的字段时可能够有相同的哈希值的,即一个哈希值可能够对应了多个字段,这被称为哈希冲突,但即使如此也大大缩小了查找的范围,一定程度上也提高了查找的效率

3.缺点:

       没有办法进行范围查找,因为通过哈希值进行查找所得的都是具体的结果,并且其中的值都是无序的,无法进行大小的比较


二:二叉树

1.内部原理:

类似于树的形状,最上面是根节点,每一个节点最多只有两个分叉,往左为左子树,右边是右子树,同样的,往左边的一个点,或者是往右边的也是一个根节点,根节点往左均为左子树,往右均为右子树.

2.优点:

       了解了左子树与右子树的概念之后,对与跟节点来说,其左子树都是小于它的数字,右边的数都是大于它的数字.从而使得查询速度更快一些

3.缺点:

  1>因为这种特性,也可能会出现一些其他的情况,比如类似于链接的结构,从1-->2-->3...  这种特殊的不平衡,会使得其查询跟平常的全表查询相当,并没有用到二叉树查询

   2>同样的,这种二叉树查询也无法进行范围性的查询,需要回旋,反复的进行寻找,所以无法进行范围查询

三:BTREE

BTREE查询有两种,分别是:B-TREE  以及B+TREE两种

       1.B-TREE:

 可以先设置节点的多少,比方说MAX.DEGREE=3的时候,就代表一个节点最多只能够有2个数据,如果再多会将中间的值 向上提取 出来,再添加数据,根据数据的大小,再进行重复的操作,从而形成一个类似于树的形状

     (图为以3为最大节点的B-TREE图像)

       2.B+TREE:

 B+TREE索引实际上跟B-TREE索引的大概原理是一样的,但是有一点,B+TREE索引在使用的时候,比如说设置节点最大值为3,插入0001,0002,再进行插入的时候,会将中间的'映射',向上提取出来,而操作原本的数据,并不将原本的数据向上提取,而是提取了'映射'.

    (图为以3为最大节点的B+TREE图像)

       TIPS:值得注意的一点是,通过这一保存原本数据的特性,我们就能够使用B+TREE索引进行范围查找了,也大大节省了磁盘扫描的时间


四.BTREE索引对于存储引擎的应用:

       1.MylSAM存储引擎:

  MylSAM存储引擎使用的是:B+TREE索引,例如,查询某个具体的值的时候,MylSAM先看索引列的值,根据指针判断其大小,之后再向下,左子树或者是右子树进行寻找,直到查询到某个需要的叶节点,叶节点的DATA存放的是数据记录的一个地址值,之后再通过地址值进行寻找,获得相应的结果


       2.InnoDB引擎:

    依旧是根据B+TREE建立的引擎,大部分跟MYLSQM有些不一样的一点就是,

   InnoDB的叶节点的DATA存储的是数据!!!而不再是一个地址值,也就是说可以直接得到相应的值,索引效率要比MYLSAM高一些,但是直接对于地址值的存放,也使得比较'吃'硬盘内存的大小.

                                                               OVER!感谢观看

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
打赏
0
1
1
0
30
分享
相关文章
MySQL原理简介—6.简单的生产优化案例
本文介绍了数据库和存储系统的几个主题: 1. **MySQL日志的顺序写和数据文件的随机读指标**:解释了磁盘随机读和顺序写的原理及对数据库性能的影响。 2. **Linux存储系统软件层原理及IO调度优化原理**:解析了Linux存储系统的分层架构,包括VFS、Page Cache、IO调度等,并推荐使用deadline算法优化IO调度。 3. **数据库服务器使用的RAID存储架构**:介绍了RAID技术的基本概念及其如何通过多磁盘阵列提高存储容量和数据冗余性。 4. **数据库Too many connections故障定位**:分析了MySQL连接数限制问题的原因及解决方法。
MySQL原理简介—3.生产环境的部署压测
本文介绍了Java系统和数据库在高并发场景下的压测要点: 1. 普通系统在4核8G机器上每秒能处理几百个请求 2. 高并发下数据库建议使用8核16G或更高配置的机器 3. 数据库部署后需进行基准压测,以评估其最大承载能力 4. QPS和TPS的区别及重要性 5. 压测时需关注IOPS、吞吐量、延迟 6. 除了QPS和TPS,还需监控CPU、内存、磁盘IO、网络带宽 7. 影响每秒可处理并发请求数的因素包括线程数、CPU、内存、磁盘IO和网络带宽 8. Sysbench是数据库压测工具,可构造测试数据并模拟高并发场景 9. 在增加线程数量的同时,必须观察机器的性能,确保各硬件负载在合理范围
MySQL原理简介—1.SQL的执行流程
本文介绍了MySQL驱动、数据库连接池及SQL执行流程的关键组件和作用。主要内容包括:MySQL驱动用于建立Java系统与数据库的网络连接;数据库连接池提高多线程并发访问效率;MySQL中的连接池维护多个数据库连接并进行权限验证;网络连接由线程处理,监听请求并读取数据;SQL接口负责执行SQL语句;查询解析器将SQL语句解析为可执行逻辑;查询优化器选择最优查询路径;存储引擎接口负责实际的数据操作;执行器根据优化后的执行计划调用存储引擎接口完成SQL语句的执行。整个流程确保了高效、安全地处理SQL请求。
116 75
MySQL原理简介—9.MySQL索引原理
本文详细介绍了MySQL索引的设计与使用原则,涵盖磁盘数据页的存储结构、页分裂机制、主键索引设计及查询过程、聚簇索引和二级索引的原理、B+树索引的维护、联合索引的使用规则、SQL排序和分组时如何利用索引、回表查询对性能的影响以及索引覆盖的概念。此外还讨论了索引设计的案例,包括如何处理where筛选和order by排序之间的冲突、低基数字段的处理方式、范围查询字段的位置安排,以及通过辅助索引来优化特定查询场景。总结了设计索引的原则,如尽量包含where、order by、group by中的字段,选择离散度高的字段作为索引,限制索引数量,并针对频繁查询的低基数字段进行特殊处理等。
MySQL原理简介—9.MySQL索引原理
MySQL原理简介—12.MySQL主从同步
本文介绍了四种为MySQL搭建主从复制架构的方法:异步复制、半同步复制、GTID复制和并行复制。异步复制通过配置主库和从库实现简单的主从架构,但存在数据丢失风险;半同步复制确保日志复制到从库后再提交事务,提高了数据安全性;GTID复制简化了配置过程,增强了复制的可靠性和管理性;并行复制通过多线程技术降低主从同步延迟,保证数据一致性。此外,还讨论了如何使用工具监控主从延迟及应对策略,如强制读主库以确保即时读取最新数据。
MySQL原理简介—12.MySQL主从同步
MySQL原理简介—7.redo日志的底层原理
本文介绍了MySQL中redo日志和undo日志的主要内容: 1. redo日志的意义:确保事务提交后数据不丢失,通过记录修改操作并在系统宕机后重做日志恢复数据。 2. redo日志文件构成:记录表空间号、数据页号、偏移量及修改内容。 3. redo日志写入机制:redo日志先写入Redo Log Buffer,再批量刷入磁盘文件,减少随机写以提高性能。 4. Redo Log Buffer解析:描述Redo Log Buffer的内存结构及刷盘时机,如事务提交、Buffer过半或后台线程定时刷新。 5. undo日志原理:用于事务回滚,记录插入、删除和更新前的数据状态,确保事务可完整回滚。
MySQL原理简介—8.MySQL并发事务处理
这段内容深入探讨了SQL语句执行原理、事务并发问题、MySQL事务隔离级别及其实现机制、锁机制以及数据库性能优化等多个方面。
MySQL原理简介—2.InnoDB架构原理和执行流程
本文介绍了MySQL中更新语句的执行流程及其背后的机制,主要包括: 1. **更新语句的执行流程**:从SQL解析到执行器调用InnoDB存储引擎接口。 2. **Buffer Pool缓冲池**:缓存磁盘数据,减少磁盘I/O。 3. **Undo日志**:记录更新前的数据,支持事务回滚。 4. **Redo日志**:确保事务持久性,防止宕机导致的数据丢失。 5. **Binlog日志**:记录逻辑操作,用于数据恢复和主从复制。 6. **事务提交机制**:包括redo日志和binlog日志的刷盘策略,确保数据一致性。 7. **后台IO线程**:将内存中的脏数据异步刷入磁盘。
MySQL原理简介—11.优化案例介绍
本文介绍了四个SQL性能优化案例,涵盖不同场景下的问题分析与解决方案: 1. 禁止或改写SQL避免自动半连接优化。 2. 指定索引避免按聚簇索引全表扫描大表。 3. 按聚簇索引扫描小表减少回表次数。 4. 避免产生长事务长时间执行。
MySQL主从复制 —— 作用、原理、数据一致性,异步复制、半同步复制、组复制
MySQL主从复制 作用、原理—主库线程、I/O线程、SQL线程;主从同步要求,主从延迟原因及解决方案;数据一致性,异步复制、半同步复制、组复制
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等