第16章_多版本并发控制
1.什么是MVCC
MVCC (Multiversion Concurrency Control),多版本并发控制。顾名思义,MVCC 是通过数据行的多个版
本管理来实现数据库的 并发控制 。这项技术使得在InnoDB的事务隔离级别下执行 一致性读 操作有了保
证。换言之,就是为了查询一些正在被另一个事务更新的行,并且可以看到它们被更新之前的值,这样
在做查询的时候就不用等待另一个事务释放锁。
2.快照读与当前读
MVCC在MySQL InnoDB中的实现主要是为了提高数据库并发性能,用更好的方式去处理 读-写冲突 ,做到
即使有读写冲突时,也能做到 不加锁 , 非阻塞并发读 ,而这个读指的就是 快照读 , 而非 当前读 。当前
读实际上是一种加锁的操作,是悲观锁的实现。而MVCC本质是采用乐观锁思想的一种方式。
2.1 快照读
快照读又叫一致性读,读取的是快照数据。不加锁的简单的 SELECT 都属于快照读,即不加锁的非阻塞
读;比如这样
2.2 当前读
当前读读取的是记录的最新版本(最新数据,而不是历史版本的数据),读取时还要保证其他并发事务
不能修改当前记录,会对读取的记录进行加锁。加锁的 SELECT,或者对数据进行增删改都会进行当前
读。比如:
SELECT * FROM player WHERE ... SELECT * FROM student LOCK IN SHARE MODE; # 共享锁 SELECT * FROM student FOR UPDATE; # 排他锁 INSERT INTO student values ... # 排他锁 DELETE FROM student WHERE ... # 排他锁 UPDATE student SET ... # 排他锁
3.复习
3.1 再谈隔离级别
我们知道事务有 4 个隔离级别,可能存在三种并发问题:
3.2 隐藏字段、Undo Log版本链
回顾一下undo日志的版本链,对于使用 InnoDB 存储引擎的表来说,它的聚簇索引记录中都包含两个必
要的隐藏列。
trx_id
:每次一个事务对某条聚簇索引记录进行改动时,都会把该事务的 事务id 赋值给
trx_id 隐藏列。roll_pointer
:每次对某条聚簇索引记录进行改动时,都会把旧的版本写入到 undo日志 中,然
后这个隐藏列就相当于一个指针,可以通过它来找到该记录修改前的信息。
insert undo只在事务回滚时起作用,当事务提交后,该类型的undo日志就没用了,它占用的Undo
Log Segment也会被系统回收(也就是该undo日志占用的Undo页面链表要么被重用,要么被释
放)
假设之后两个事务id分别为 10 、 20 的事务对这条记录进行 UPDATE 操作,操作流程如下:
能不能在两个事务中交叉更新同一条记录呢?不能!这不就是一个事务修改了另一个未提交事务修改过的数据,脏写。
InnoDB使用锁来保证不会有脏写情况的发生,也就是在第一个事务更新了某条记录后,就会给这条记录加锁,另一个事务再次更新时就需要等待第一个事务提交了,把锁释放之后才可以继续更新。
每次对记录进行改动,都会记录一条undo日志,每条undo日志也都有一个 roll_pointer 属性
( INSERT 操作对应的undo日志没有该属性,因为该记录并没有更早的版本),可以将这些 undo日志
都连起来,串成一个链表
对该记录每次更新后,都会将旧值放到一条 undo日志 中,就算是该记录的一个旧版本,随着更新次数
的增多,所有的版本都会被 roll_pointer 属性连接成一个链表,我们把这个链表称之为 版本链 ,版
本链的头节点就是当前记录最新的值。
每个版本中还包含生成该版本时对应的 事务id 。
4.MVCC实现原理之ReadView
MVCC 的实现依赖于:隐藏字段、Undo Log、Read View。
4.1 什么是ReadView
对历史快照的管理行为就是由ReadView来体现的(哪些可见,哪些不可见)
在MVcC机制中,多个事务对同一个行记录进行更新会产生多个历史快照,这些历史快照保存在Undo Log里。如果一个事务想要查询这个行记录,需要读取哪个版本的行记录呢?这时就需要用到ReadView了,它帮我们解决了行的可见性问题。
ReadView就是事务A在使用MVcc机制进行快照读操作时产生的读视图。当事务启动时,会生成数据库系统当前的一个快照,InnoDB为每个事务构造了一个数组,用来记录并维护系统当前活跃事务的ID(“活跃"指的就是,启动了但还没提交)。
4.2 设计思路
使用 READ UNCOMMITTED 隔离级别的事务,由于可以读到未提交事务修改过的记录,所以直接读取记录
的最新版本就好了。
使用 SERIALIZABLE 隔离级别的事务,InnoDB规定使用加锁的方式来访问记录。
使用 READ COMMITTED 和 REPEATABLE READ 隔离级别的事务,都必须保证读到 已经提交了的 事务修改
过的记录。假如另一个事务已经修改了记录但是尚未提交,是不能直接读取最新版本的记录的,核心问
题就是需要判断一下版本链中的哪个版本是当前事务可见的,这是ReadView要解决的主要问题。
这个ReadView中主要包含4个比较重要的内容,分别如下:
creator_trx_i
d ,创建这个 Read View 的事务 ID。
说明:只有在对表中的记录做改动时(执行INSERT、DELETE、UPDATE这些语句时)才会为
事务分配事务id,否则在一个只读事务中的事务id值都默认为0。
trx_ids
,表示在生成ReadView时当前系统中活跃的读写事务的 事务id列表 。up_limit_id
,活跃的事务中最小的事务 ID。low_limit_id
,表示生成ReadView时系统中应该分配给下一个事务的 id 值。low_limit_id 是系
统最大的事务id值,这里要注意是系统中的事务id,需要区别于正在活跃的事务ID。
注意:low_limit_id并不是trx_ids中的最大值,事务id是递增分配的。比如,现在有id为1,
2,3这三个事务,之后id为3的事务提交了。那么一个新的读事务在生成ReadView时,
trx_ids就包括1和2,up_limit_id的值就是1,low_limit_id的值就是4。
举例
trx_ids为trx2,trx3,trx5和trx8的集合,系统最大的事务id(low_limit_id) 为trx8+1(如果之前没有其他新增的事务)
活跃的最小事务ID(up_limit_id)为trx2
4.3 ReadView的规则
有了这个ReadView,这样在访问某条记录时,只需要按照下边的步骤判断记录的某个版本是否可见。
- 如果被访问版本的trx_id属性值与ReadView中的
creator_trx_id
值相同,意味着当前事务在访问
它自己修改过的记录,所以该版本可以被当前事务访问。 - 如果被访问版本的trx_id属性值小于ReadView中的
up_limit_id
值,表明生成该版本的事务在当前
事务生成ReadView前已经提交,所以该版本可以被当前事务访问。 - 如果被访问版本的trx_id属性值大于或等于ReadView中的
low_limit_id
值,表明生成该版本的事
务在当前事务生成ReadView后才开启,所以该版本不可以被当前事务访问。 - 如果被访问版本的trx_id属性值在ReadView的
up_limit_id
和low_limit_id
之间,那就需要判断一下trx_id属性值是不是在 trx_ids 列表中。
- 如果在,说明创建ReadView时生成该版本的事务还是活跃的,该版本不可以被访问。
- 如果不在,说明创建ReadView时生成该版本的事务已经被提交,该版本可以被访问。
4.4 MVCC整体操作流程
了解了这些概念之后,我们来看下当查询一条记录的时候,系统如何通过MVCC找到它:
- 首先获取事务自己的版本号,也就是事务 ID;
- 获取 ReadView;
- 查询得到的数据,然后与 ReadView 中的事务版本号进行比较;
- 如果不符合 ReadView 规则,就需要从 Undo Log 中获取历史快照;
- 最后返回符合规则的数据。
如果某个版本的数据对当前事务不可见,就顺着版本链找到下一个版本的数据,继续按照上边的步骤判断可见性,以此类推,知道版本链中的最后一个版本,如果最后一个版本也不可见,就意外着这条记录对该事务完全不可见,查询结果就不包含该记录
在隔离级别为读已提交(Read Committed)时,一个事务中的每一次 SELECT
查询都会重新获取一次
Read View。
注意,此时同样的查询语句都会重新获取一次 Read View,这时如果 Read View 不同,就可能产生
不可重复读或者幻读的情况
例如 我在第一个select之后事务二修改了这个记录并且提交,然后我再一次的Read View就会不同,并且会select到事务2提交的记录
当隔离级别为可重复读的时候,就避免了不可重复读,这是因为一个事务只在第一次 SELECT 的时候会
获取一次 Read View,而后面所有的 SELECT 都会复用这个 Read View,如下表所示:
5.举例说明
假设现在student表中只有一个事务为id为8的事务插入的一条记录
MCC只能在READ COMMITTED和REPEATABLE READ两个隔离级别下工作。接下来看一下READ CONMITTED和REPEATABLE READ
所谓的生成ReadView的时机不同到底不同在哪里。
5.1 READ COMMITTED隔离级别下
READ COMMITTED :每次读取数据前都生成一个ReadView。
现在有两个 事务id 分别为 10 、 20 的事务在执行:
# Transaction 10 BEGIN; UPDATE student SET name="李四" WHERE id=1; UPDATE student SET name="王五" WHERE id=1; # Transaction 20 BEGIN; # 更新了一些别的表的记录
说明:事务执行过程中,只有在第一次真正修改记录时(比如使用INSERT、DELETE、UPDATE语句),才会被分配一个单独的事务id,这个事务id是递增的。所以我们才在事务2中更新一些别的表的记录,目的是让它分配事务id。
此刻,表student 中 id 为 1 的记录得到的版本链表如下所示:
假设现在有一个使用 READ COMMITTED 隔离级别的事务开始执行:
# 使用READ COMMITTED隔离级别的事务 BEGIN; # SELECT1:Transaction 10、20未提交 SELECT * FROM student WHERE id = 1; # 得到的列name的值为'张三'
之后,我们把 事务id 为 10
的事务提交一下:
# Transaction 10 BEGIN; UPDATE student SET name="李四" WHERE id=1; UPDATE student SET name="王五" WHERE id=1; COMMIT;
然后再到 事务id 为 20
的事务中更新一下表 student 中 id 为 1 的记录:
# Transaction 20 BEGIN; # 更新了一些别的表的记录 ... UPDATE student SET name="钱七" WHERE id=1; UPDATE student SET name="宋八" WHERE id=1;
此刻,表student中 id 为 1 的记录的版本链就长这样:
然后再到刚才使用 READ COMMITTED 隔离级别的事务中继续查找这个 id
为 1
的记录,如下:
# 使用READ COMMITTED隔离级别的事务 BEGIN; # SELECT1:Transaction 10、20均未提交 SELECT * FROM student WHERE id = 1; # 得到的列name的值为'张三' # SELECT2:Transaction 10提交,Transaction 20未提交 SELECT * FROM student WHERE id = 1; # 得到的列name的值为'王五'
5.2 REPEATABLE READ隔离级别下
使用 REPEATABLE READ 隔离级别的事务来说,只会在第一次执行查询语句时生成一个 ReadView ,之
后的查询就不会重复生成了。
比如,系统里有两个 事务id 分别为 10 、 20 的事务在执行:
# Transaction 10 BEGIN; UPDATE student SET name="李四" WHERE id=1; UPDATE student SET name="王五" WHERE id=1; # Transaction 20 BEGIN; # 更新了一些别的表的记录 ...
此刻,表student 中 id 为 1 的记录得到的版本链表如下所示:
假设现在有一个使用 REPEATABLE READ 隔离级别的事务开始执行:
# 使用REPEATABLE READ隔离级别的事务 BEGIN; # SELECT1:Transaction 10、20未提交 SELECT * FROM student WHERE id = 1; # 得到的列name的值为'张三'
之后,我们把 事务id 为 10 的事务提交一下,就像这样:
# Transaction 10 BEGIN; UPDATE student SET name="李四" WHERE id=1; UPDATE student SET name="王五" WHERE id=1; COMMIT;
然后再到 事务id 为 20 的事务中更新一下表 student 中 id 为 1 的记录:
# Transaction 20 BEGIN; # 更新了一些别的表的记录 ... UPDATE student SET name="钱七" WHERE id=1; UPDATE student SET name="宋八" WHERE id=1;
此刻,表student 中 id 为 1 的记录的版本链长这样
然后再到刚才使用 REPEATABLE READ 隔离级别的事务中继续查找这个 id 为 1 的记录,如下:
使用REPEATABLE READ隔离级别的事务 BEGIN; # SELECT1:Transaction 10、20均未提交 SELECT * FROM student WHERE id = 1; # 得到的列name的值为'张三' # SELECT2:Transaction 10提交,Transaction 20未提交 SELECT * FROM student WHERE id = 1; # 得到的列name的值仍为'张三'
5.3 如何解决幻读
接下来说明InnoDB 是如何解决幻读的。
假设现在表 student 中只有一条数据,数据内容中,主键 id=1,隐藏的 trx_id=10,它的 undo log 如下图
所示。
假设现在有事务 A 和事务 B 并发执行, 事务 A 的事务 id 为 20 , 事务 B 的事务 id 为 30 。
步骤1:事务 A 开始第一次查询数据,查询的 SQL 语句如下。
select * from student where id >= 1;
在开始查询之前,MySQL 会为事务 A 产生一个 ReadView,此时 ReadView 的内容如下: trx_ids= [20,30] , up_limit_id=20 , low_limit_id=31 , creator_trx_id=20 。
由于此时表 student 中只有一条数据,且符合 where id>=1 条件,因此会查询出来。然后根据 ReadView
机制,发现该行数据的trx_id=10,小于事务 A 的 ReadView 里 up_limit_id,这表示这条数据是事务 A 开
启之前,其他事务就已经提交了的数据,因此事务 A 可以读取到。
结论:事务 A 的第一次查询,能读取到一条数据,id=1。
步骤2:接着事务 B(trx_id=30),往表 student 中新插入两条数据,并提交事务。
insert into student(id,name) values(2,'李四'); insert into student(id,name) values(3,'王五');
此时表student 中就有三条数据了,对应的 undo 如下图所示:
步骤3:接着事务 A 开启第二次查询,根据可重复读隔离级别的规则,此时事务 A 并不会再重新生成
ReadView。此时表 student 中的 3 条数据都满足 where id>=1 的条件,因此会先查出来。然后根据
ReadView 机制,判断每条数据是不是都可以被事务 A 看到。
1)首先 id=1 的这条数据,前面已经说过了,可以被事务 A 看到。
2)然后是 id=2 的数据,它的 trx_id=30,此时事务 A 发现,这个值处于 up_limit_id 和 low_limit_id 之
间,因此还需要再判断 30 是否处于 trx_ids 数组内。由于事务 A 的 trx_ids=[20,30],因此在数组内,这表
示 id=2 的这条数据是与事务 A 在同一时刻启动的其他事务提交的,所以这条数据不能让事务 A 看到。
3)同理,id=3 的这条数据,trx_id 也为 30,因此也不能被事务 A 看见。
结论:最终事务 A 的第二次查询,只能查询出 id=1 的这条数据。这和事务 A 的第一次查询的结果是一样
的,因此没有出现幻读现象,所以说在 MySQL 的可重复读隔离级别下,不存在幻读问题。
但是我感觉只是快照读的情况下解决幻读,你更改的时候还是会受影响,所以只能是可串行化是能完美解决幻读
6. 总结
这里介绍了 MVCC 在 READ COMMITTD
、 REPEATABLE READ
这两种隔离级别的事务在执行快照读操作时
访问记录的版本链的过程。这样使不同事务的 读-写 、 写-读 操作并发执行,从而提升系统性能。
核心点在于 ReadView 的原理, READ COMMITTD 、
REPEATABLE READ` 这两个隔离级别的一个很大不同
就是生成ReadView的时机不同:
READ COMMITTD
在每一次进行普通SELECT操作前都会生成一个ReadViewREPEATABLE READ
只在第一次
说明:我们之前说执行DELETE语句或者更新主键的UPDATE语句并不会立即把对应的记录完全从页面中删除,而是执行一个所谓的delete mark操作,相当于只是对记录打上了一个删除标志位,这主要就是为MVCC服务的。
通过MVCC 我们可以解决:
- 读写之间阻塞的问题。通过MVCC可以让读写互相不阻塞,即读不阻塞写,写不阻塞读,这样就可以提升事
务并发处理能力。 - 降低了死锁的概率。这是因为MVCC采用了乐观锁的方式,读取数据时并不需要加锁,对于写操作,也只锁
定必要的行。
LE READ` 这两个隔离级别的一个很大不同
就是生成ReadView的时机不同:
READ COMMITTD
在每一次进行普通SELECT操作前都会生成一个ReadViewREPEATABLE READ
只在第一次
说明:我们之前说执行DELETE语句或者更新主键的UPDATE语句并不会立即把对应的记录完全从页面中删除,而是执行一个所谓的delete mark操作,相当于只是对记录打上了一个删除标志位,这主要就是为MVCC服务的。
通过MVCC 我们可以解决:
- 读写之间阻塞的问题。通过MVCC可以让读写互相不阻塞,即读不阻塞写,写不阻塞读,这样就可以提升事
务并发处理能力。 - 降低了死锁的概率。这是因为MVCC采用了乐观锁的方式,读取数据时并不需要加锁,对于写操作,也只锁
定必要的行。 - 解决快照读的问题。当我们查询数据库在某个时间点的快照时,只能看到这个时间点之前事务提交更新的结果,而不能看到这个时间点之后事务提交的更新结果。