深度学习基础之经典神经网络模型

简介: 深度学习模型来源于神经系统层次化结构特性,主要机制是层层递进,逐层抽象,主要应用于计算机视觉(computer vision,CV)和自然语言处理(Natural language processing,NLP)。

人工智能有三大主义(①符号主义-用规则教,②联结主义-用数据学,③行为主义-用问题引导-如强化学习),其中深度学习是联结主义的经典,直接从海量数据中学习,依赖于数据、可解释性不强。

   深度学习模型来源于神经系统层次化结构特性,主要机制是层层递进,逐层抽象,主要应用于计算机视觉(computer vision,CV)和自然语言处理(Natural language processing,NLP)。

1.前馈神经网络(Feedforward Neural Networks,FNN):

 前馈神经网络是最基本的神经网络,一般包括输入层、隐藏层和输出层。数据从输入层单向传递到输出层,每层神经元只和相邻层神经元相连,没有循环连接。

 多层感知器(Multilayer Perceptron,MLP)是最常见的前馈神经网络结构,相邻层所包含的神经元之间使用全连接方式进行连接(全连接是指两个相邻层之间的神经元相互成对连接)。

2.卷积神经网络(Convolutional Neural Networks,CNN):

 CNN是专门设计用于处理网格结构数据(如图像)的神经网络,LeCun等人设计了LeNet模型用于手写体识别,这一实验基本是入门深度学习必做,地位相当于初学代码必敲Hello Word。

 LeNet、AlexNet、VGG、ResNet、Inception等是经典的CNN架构,虽然针对不同应用场景的卷积神经网络结构越来越复杂,但本质仍然是以卷积、池化为核心构建而成。

3.循环神经网络(Recurrent Neural Networks,RNN):

 RNN是一种具有循环连接的神经网络,适用于处理序列数据(如文本句子、视频帧等),先前介绍的FNN或CNN所需要处理的输入数据一次性给定,难以处理存在前后依赖关系的数据。

 RNN的本质是希望模拟人所具有的记忆能力,在学习过程中记住部分已经出现的信息,并利用所记住的信息影响后续结点输出。循环神经网络在自然语言处理,如语音识别、情感分析、机器翻译等领域有重要应用。

 长短时记忆网络(LSTM)、门控循环单元(GRU)等是常见的RNN架构。

4.自注意力网络(Self-Attention Networks):

 自注意力网络,采用自注意力机制,允许每个输入位置对其他位置进行加权。它具有可学习的感受野,让机器学会去感知数据中的重要和不重要的部分。上述提到的CNN中希望模型不仅仅考虑某一个像素点,而是让模型考虑一个感受野(Receptive field),对于自注意力机制来说,相当于模型自己决定感受野是怎样的形状和类型。可以说CNN是特殊情况下的一种self-attention,self-attention就是复杂版的CNN。

 BERT、GPT、Transformer等都是基于自注意力的模型。下图是经典transformer结构图,模型包含两个部分:编码器和解码器。编码器主要负责将输入序列转化为一个定长的向量表示,解码器则将这个向量解码为输出序列。

5.生成对抗网络(Generative Adversarial Networks,GAN):

 生成对抗网络由一个生成器(generator,简称G)和一个判别器(discriminator,简称D)组成。GAN的核心是通过生成器和判别器两个神经网络之间的竞争对抗,不断提升彼此水平以使得生成器所生成数据(人工伪造数据)与真实数据相似,使判别器无法区分真实数据和生成数据。DCGAN、CycleGAN、WGAN等是GAN的不同变体。

6.图神经网络(Graph Neural Networks,GNN):

 GNN用于处理图数据,能够对节点和边进行学习和表示。图神经网络专门处理不规则的图结构数据,如社交网络、知识图谱等。图结构数据是一种由节点和边组成的复杂关系网络,其中节点代表实体,边代表实体之间的关系。

 Graph Convolutional Networks(GCN)、Graph Attention Networks(GAT)、GraphSAGE等都是GNN架构。GNN已经在多个领域取得了广泛的成功,包括社交网络分析、推荐系统、生物信息学、化学、计算机视觉等,被用于节点分类、社区检测、图生成、知识图谱嵌入等各种任务。

7.自编码器(Auto Encoders):

 自编码器(Auto Encoder,简称AE)是一种无监督学习的神经网络模型,用于数据压缩、特征学习、降维和图片降噪、修复等,包含两部分:Encoder(编码器)和Decoder(解码器)。有卷积自动编码器(CAE:Convolutional Autoencoder)、变分自动编码器(VAE:Variational Autoencoder)等多种类型。

相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
23 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
29天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
257 55
|
29天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
170 73
|
12天前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
69 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
61 31
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
123 36
|
1月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
81 21
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
80 23
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费习惯预测的深度学习模型
使用Python实现智能食品消费习惯预测的深度学习模型
114 19
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
118 18