Bengio等人新作:注意力可被视为RNN,新模型媲美Transformer,但超级省内存

简介: 【6月更文挑战第3天】Bengio等人提出的新模型Aaren视注意力为特殊RNN,以解决Transformer在资源受限环境中的计算成本高和内存使用问题。Aaren模型通过并行前缀和算法实现高效计算和常数级内存使用,性能接近Transformer,同时在时间序列任务中表现优秀,尤其适合移动设备和嵌入式系统。尽管可能在某些复杂任务上不如Transformer,但其高效性为实时数据处理提供了潜力。论文链接:[https://arxiv.org/pdf/2405.13956](https://arxiv.org/pdf/2405.13956)

在深度学习领域,序列建模一直是一个关键的研究课题,它在诸如强化学习、事件预测、时间序列分类和预测等多个领域都有着广泛的应用。近年来,Transformer模型因其出色的性能和利用GPU并行计算的能力而成为序列建模的主流架构。然而,Transformer在推理时的计算成本较高,尤其是在资源受限的环境中,如移动设备和嵌入式系统,这限制了其应用范围。

为了解决这一问题,Bengio等人提出了一种新的视角,将注意力机制视为一种特殊的递归神经网络(RNN),并开发了一种新的模型——Aaren。这一研究成果在深度学习社区引起了广泛关注,因为它不仅在性能上与Transformer相媲美,而且在时间和内存效率上都有显著提升。

Transformer模型通过自注意力机制实现了对序列数据的并行处理,这使得它在处理长序列时表现出色。但是,这种并行性也带来了计算上的挑战。Transformer在处理新输入时需要重新计算所有先前的隐藏状态,这不仅增加了计算负担,还导致了内存使用量的线性增长。此外,对于长序列的依赖关系,Transformer需要存储大量的中间状态,这在资源受限的设备上是不切实际的。

Aaren模型的核心创新在于将注意力机制重新解释为一种RNN,并且提出了一种基于并行前缀和算法的高效计算方法。这种方法允许Aaren在保持并行训练的优势的同时,能够在推理时高效地更新模型状态,且只需要常数级的内存。

具体来说,Aaren模型通过将注意力的输出视为RNN的隐藏状态,利用并行前缀和算法来计算这些隐藏状态。这种方法不仅提高了计算效率,还使得模型能够以线性时间复杂度处理序列数据,而不是传统Transformer的二次方时间复杂度。

在多个数据集和不同的序列建模任务中,Aaren模型展现出了与Transformer相媲美的性能。无论是在强化学习、事件预测、时间序列分类还是时间序列预测任务中,Aaren都能够取得与Transformer相似的结果,同时在资源消耗上却要小得多。

Aaren模型的优势在于其时间和内存效率。它能够在资源受限的环境中运行,这对于移动设备和嵌入式系统等应用场景尤为重要。此外,Aaren的高效性也使其在需要实时处理和分析数据的场景中具有潜在的应用价值。

然而,Aaren模型也面临着一些挑战。由于其注意力查询是输入独立的,这意味着它可能不如输入依赖的Transformer模型那样在某些复杂的序列建模任务中表现出色。这可能限制了Aaren在需要高度表达性序列模型的应用,例如大型语言模型。

论文地址:https://arxiv.org/pdf/2405.13956

目录
相关文章
|
5月前
|
机器学习/深度学习 人工智能 算法
Mamba作者新作:将Llama3蒸馏成混合线性 RNN
【9月更文挑战第25天】《Distillation and Acceleration of Hybrid Models》一文由日内瓦大学、Together AI、康奈尔大学和普林斯顿大学的研究者联合发表,提出将大型Transformer模型(如Llama3)蒸馏成混合线性RNN的新方法,旨在提升长序列生成任务的效率。该方法通过权重映射和多阶段蒸馏,结合渐进蒸馏、监督微调及定向偏好优化技术,有效解决了Transformer模型的二次复杂度和高内存需求问题。实验表明,混合模型在聊天基准测试中表现出色,甚至优于原模型,并通过硬件感知解码算法进一步加速推理。然而,该方法在其他任务上的适用性仍有待验证。
81 7
|
11天前
|
机器学习/深度学习 编解码 BI
YOLOv11改进策略【Conv和Transformer】| CVPR-2023 BiFormer 稀疏自注意力,减少内存占用
YOLOv11改进策略【Conv和Transformer】| CVPR-2023 BiFormer 稀疏自注意力,减少内存占用
34 3
YOLOv11改进策略【Conv和Transformer】| CVPR-2023 BiFormer 稀疏自注意力,减少内存占用
|
7天前
|
机器学习/深度学习 编解码 BI
RT-DETR改进策略【Conv和Transformer】| CVPR-2023 BiFormer 稀疏自注意力,减少内存占用
RT-DETR改进策略【Conv和Transformer】| CVPR-2023 BiFormer 稀疏自注意力,减少内存占用
19 0
RT-DETR改进策略【Conv和Transformer】| CVPR-2023 BiFormer 稀疏自注意力,减少内存占用
|
5月前
|
程序员 编译器 C++
【C++核心】C++内存分区模型分析
这篇文章详细解释了C++程序执行时内存的四个区域:代码区、全局区、栈区和堆区,以及如何在这些区域中分配和释放内存。
73 2
|
2月前
|
人工智能 物联网 C语言
SVDQuant:MIT 推出的扩散模型后训练的量化技术,能够将模型的权重和激活值量化至4位,减少内存占用并加速推理过程
SVDQuant是由MIT研究团队推出的扩散模型后训练量化技术,通过将模型的权重和激活值量化至4位,显著减少了内存占用并加速了推理过程。该技术引入了高精度的低秩分支来吸收量化过程中的异常值,支持多种架构,并能无缝集成低秩适配器(LoRAs),为资源受限设备上的大型扩散模型部署提供了有效的解决方案。
92 5
SVDQuant:MIT 推出的扩散模型后训练的量化技术,能够将模型的权重和激活值量化至4位,减少内存占用并加速推理过程
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
RNN回归!Bengio新作大道至简与Transformer一较高下
研究团队提出了一种名为“minimal LSTMs and GRUs”的新型RNN模型,通过简化传统LSTM和GRU结构,去除了隐藏状态对输入、遗忘和更新门的依赖,实现了无需BPTT的高效并行训练。该模型不仅保持了RNN处理序列数据的优势,还大幅提升了训练速度,在多个任务上的表现与Transformer相当,同时减少了参数量。研究结果发表于论文《minimal LSTMs and GRUs》。
59 9
|
4月前
|
机器学习/深度学习 算法 物联网
大模型进阶微调篇(一):以定制化3B模型为例,各种微调方法对比-选LoRA还是PPO,所需显存内存资源为多少?
本文介绍了两种大模型微调方法——LoRA(低秩适应)和PPO(近端策略优化)。LoRA通过引入低秩矩阵微调部分权重,适合资源受限环境,具有资源节省和训练速度快的优势,适用于监督学习和简单交互场景。PPO基于策略优化,适合需要用户交互反馈的场景,能够适应复杂反馈并动态调整策略,适用于强化学习和复杂用户交互。文章还对比了两者的资源消耗和适用数据规模,帮助读者根据具体需求选择最合适的微调策略。
1331 5
|
5月前
|
机器学习/深度学习 存储 算法
Transformer、RNN和SSM的相似性探究:揭示看似不相关的LLM架构之间的联系
通过探索大语言模型(LLM)架构之间的潜在联系,我们可能开辟新途径,促进不同模型间的知识交流并提高整体效率。尽管Transformer仍是主流,但Mamba等线性循环神经网络(RNN)和状态空间模型(SSM)展现出巨大潜力。近期研究揭示了Transformer、RNN、SSM和矩阵混合器之间的深层联系,为跨架构的思想迁移提供了可能。本文深入探讨了这些架构间的相似性和差异,包括Transformer与RNN的关系、状态空间模型在自注意力机制中的隐含作用以及Mamba在特定条件下的重写方式。
220 7
Transformer、RNN和SSM的相似性探究:揭示看似不相关的LLM架构之间的联系
|
4月前
|
机器学习/深度学习 自然语言处理 算法
【NPL自然语言处理】带你迅速了解传统RNN模型
【NPL自然语言处理】带你迅速了解传统RNN模型
|
6月前
|
机器学习/深度学习 数据采集 PyTorch
构建高效 PyTorch 模型:内存管理和优化技巧
【8月更文第27天】PyTorch 是一个强大的深度学习框架,被广泛用于构建复杂的神经网络模型。然而,在处理大规模数据集或使用高性能 GPU 进行训练时,有效的内存管理对于提升模型训练效率至关重要。本文将探讨如何在 PyTorch 中有效地管理内存,并提供一些优化技巧及代码示例。
537 1

热门文章

最新文章