【YOLOv8改进】MSCA: 多尺度卷积注意力 (论文笔记+引入代码).md

简介: SegNeXt是提出的一种新的卷积网络架构,专注于语义分割任务,它证明了卷积注意力在编码上下文信息上优于自注意力机制。该模型通过结合深度卷积、多分支深度卷积和1x1逐点卷积实现高效性能提升。在多个基准测试中,SegNeXt超越了现有最佳方法,如在Pascal VOC 2012上达到90.6%的mIoU,参数量仅为EfficientNet-L2 w/ NAS-FPN的1/10。此外,它在ADE20K数据集上的mIoU平均提高了2.0%,同时保持相同的计算量。YOLOv8中引入了名为MSCAAttention的模块,以利用这种多尺度卷积注意力机制。更多详情和配置可参考相关链接。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

摘要

我们提出了SegNeXt,一种用于语义分割的简单卷积网络架构。最近基于变换器的模型由于自注意力在编码空间信息方面的效率而在语义分割领域占据主导地位。在本文中,我们展示了卷积注意力是一种比变换器中的自注意力机制更高效和有效的编码上下文信息的方式。通过重新审视成功的分割模型所拥有的特征,我们发现了几个关键组件,这些组件导致了分割模型性能的提升。这激励我们设计了一种新颖的卷积注意力网络,该网络使用廉价的卷积操作。没有任何花哨的技巧,我们的SegNeXt在包括ADE20K、Cityscapes、COCO-Stuff、Pascal VOC、Pascal Context和iSAID在内的流行基准测试上,显著提高了先前最先进方法的性能。值得注意的是,SegNeXt超越了EfficientNet-L2 w/ NAS-FPN,在Pascal VOC 2012测试排行榜上仅使用1/10的参数就达到了90.6%的mIoU。平均而言,与最先进的方法相比,SegNeXt在ADE20K数据集上的mIoU提高了约2.0%,同时计算量相同或更少。

创新点

基本原理

MSCA 主要由三个部分组成:(1)一个深度卷积用于聚 合局部信息;(2)多分支深度卷积用于捕获多尺度上下文信息;(3)一个 1 × 1 逐点卷积用于模拟特征中不同通道之间的关系。1 × 1 逐点卷积的输出被直接用 作卷积注意力的权重,以重新权衡 MSCA 的输入。

image-20240206143511961

MSCA 可以写成 如下形式:其中 F 代表输入特征,Att 和 Out 分别为注意力权重和输出,⊗ 表示逐元素的矩 阵乘法运算,DW­Conv 表示深度卷积,Scalei (i ∈ {0, 1, 2, 3}) 表示上图右边侧图中的第 i 个分支,Scale0 为残差连接。遵循[130],在 MSCA 的每个分支中,SegNeXt 使用两个深度条带卷积来近似模拟大卷积核的深度卷积。每个分支的卷积核大 小分别被设定为 7、11 和 21。 选择深度条带卷积主要考虑到以下两方面原 因:一方面,相较于普通卷积,条带卷积更加轻量化。为了模拟核大小为 7 × 7 的标准二维卷积,只需使用一对 7 × 1 和 1 × 7 的条带卷积。另一方面,在实际 的分割场景中存在一些条状物体,例如人和电线杆。因此,条状卷积可以作为 标准网格状的卷积的补充,有助于提取条状特征。

yolov8 引入


class MSCAAttention(BaseModule):
    """Attention Module in Multi-Scale Convolutional Attention Module (MSCA).

    Args:
        channels (int): The dimension of channels.
        kernel_sizes (list): The size of attention
            kernel. Defaults: [5, [1, 7], [1, 11], [1, 21]].
        paddings (list): The number of
            corresponding padding value in attention module.
            Defaults: [2, [0, 3], [0, 5], [0, 10]].
    """

    def __init__(self,
                 channels,
                 kernel_sizes=[5, [1, 7], [1, 11], [1, 21]],
                 paddings=[2, [0, 3], [0, 5], [0, 10]]):
        super().__init__()
        self.conv0 = nn.Conv2d(
            channels,
            channels,
            kernel_size=kernel_sizes[0],
            padding=paddings[0],
            groups=channels)
        for i, (kernel_size,
                padding) in enumerate(zip(kernel_sizes[1:], paddings[1:])):
            kernel_size_ = [kernel_size, kernel_size[::-1]]
            padding_ = [padding, padding[::-1]]
            conv_name = [f'conv{i}_1', f'conv{i}_2']
            for i_kernel, i_pad, i_conv in zip(kernel_size_, padding_,
                                               conv_name):
                self.add_module(
                    i_conv,
                    nn.Conv2d(
                        channels,
                        channels,
                        tuple(i_kernel),
                        padding=i_pad,
                        groups=channels))
        self.conv3 = nn.Conv2d(channels, channels, 1)

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/136057088

相关文章
|
3月前
|
机器学习/深度学习 存储 测试技术
【YOLOv10改进-注意力机制】iRMB: 倒置残差移动块 (论文笔记+引入代码)
YOLOv10专栏介绍了融合CNN与Transformer的iRMB模块,用于轻量级模型设计。iRMB在保持高效的同时结合了局部和全局信息处理,减少了资源消耗,提升了移动端性能。在ImageNet等基准上超越SOTA,且在目标检测等任务中表现优秀。代码示例展示了iRMB的实现细节,包括自注意力机制和卷积操作的整合。更多配置信息见相关链接。
|
5月前
|
机器学习/深度学习 存储 测试技术
【YOLOv8改进】iRMB: 倒置残差移动块 (论文笔记+引入代码)
该专栏聚焦YOLO目标检测的创新改进与实战案例,提出了一种融合CNN和Transformer优点的轻量级模型——倒置残差移动块(iRMB)。iRMB旨在平衡参数、运算效率与性能,适用于资源有限的移动端。通过集成多头自注意力和卷积,iRMB在ImageNet-1K等基准上超越SOTA,同时在iPhone14上展现出比EdgeNeXt快2.8-4.0倍的速度。此外,iRMB设计简洁,适用于各种计算机视觉任务,展示出良好的泛化能力。代码示例展示了iRMB模块的实现细节。更多详细信息和配置可在相关链接中找到。
|
3月前
|
机器学习/深度学习 自然语言处理 并行计算
【YOLOv8改进 -注意力机制】Mamba之MLLAttention :基于Mamba和线性注意力Transformer的模型
YOLOv8专栏探讨了该目标检测模型的创新改进,包括使用Mamba模型的线性注意力Transformer变体,称为MLLA。Mamba的成功关键在于遗忘门和块设计,MLLA结合了这些优点,提升了视觉任务的性能。文章提供全面分析,并提出MLLA模型,其在效率和准确性上超过多种视觉模型。论文和代码可在提供的链接中找到。MLLA Block的代码示例展示了如何整合关键组件以实现高效运算。更多配置详情见相关链接。
|
3月前
|
机器学习/深度学习 计算机视觉
【YOLOv10改进-注意力机制】 MSDA:多尺度空洞注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了ViT的改进,提出DilateFormer,它结合多尺度扩张注意力(MSDA)来平衡计算效率和关注域大小。MSDA利用局部稀疏交互减少冗余,通过不同头部的扩张率捕获多尺度特征。DilateFormer在保持高性能的同时,计算成本降低70%,在ImageNet-1K、COCO和ADE20K任务上取得领先结果。YOLOv8引入了MultiDilatelocalAttention模块,用于实现膨胀注意力。更多详情及配置见相关链接。
|
4月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLOv8改进】Non-Local:基于非局部均值去噪滤波的自注意力模型 (论文笔记+引入代码)
YOLO目标检测专栏探讨了YOLO的创新改进,包括引入非局部操作以捕获远程依赖,增强上下文信息。非局部模块可应用于图像分类、目标检测等任务,尤其适合视频分类。文章介绍了Non-local自注意力模型,通过计算任意位置间交互,提供全局信息。此外,展示了如何在YOLOv8中实现NLBlockND模块。详细内容及实战配置见相关链接。
【YOLOv8改进】Non-Local:基于非局部均值去噪滤波的自注意力模型 (论文笔记+引入代码)
|
4月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进】D-LKA Attention:可变形大核注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了Transformer在医学图像分割的进展,但计算需求限制了模型的深度和分辨率。为此,提出了可变形大核注意力(D-LKA Attention),它使用大卷积核捕捉上下文信息,通过可变形卷积适应数据模式变化。D-LKA Net结合2D和3D版本的D-LKA Attention,提升了医学分割性能。YOLOv8引入了可变形卷积层以增强目标检测的准确性。相关代码和任务配置可在作者博客找到。
|
4月前
|
机器学习/深度学习 编解码 算法
【YOLOv8改进】Polarized Self-Attention: 极化自注意力 (论文笔记+引入代码)
该专栏专注于YOLO目标检测算法的创新改进和实战应用,包括卷积、主干网络、注意力机制和检测头的改进。作者提出了一种名为极化自注意(PSA)块,结合极化过滤和增强功能,提高像素级回归任务的性能,如关键点估计和分割。PSA通过保持高分辨率和利用通道及空间注意力,减少了信息损失并适应非线性输出分布。实验证明,PSA能提升标准基线和最新技术1-4个百分点。代码示例展示了如何在YOLOv8中实现PSA模块。更多详细信息和配置可在提供的链接中找到。
|
4月前
|
机器学习/深度学习 算法 计算机视觉
【YOLOv8改进】CPCA(Channel prior convolutional attention)中的通道注意力,增强特征表征能力 (论文笔记+引入代码)
该专栏聚焦YOLO目标检测的创新改进与实战,介绍了一种针对医学图像分割的通道优先卷积注意力(CPCA)方法。CPCA结合通道和空间注意力,通过多尺度深度卷积提升性能。提出的CPCANet网络在有限计算资源下,于多个数据集上展现优越分割效果。代码已开源。了解更多详情,请访问提供的专栏链接。
|
5月前
|
计算机视觉
【YOLOv8改进】 MSDA:多尺度空洞注意力 (论文笔记+引入代码)
该文介绍了DilateFormer,一种新提出的视觉变换器,它在计算效率和关注接受域之间取得平衡。通过分析ViTs,发现浅层的局部性和稀疏性,提出了多尺度扩张注意力(MSDA),用于局部、稀疏的块交互。DilateFormer结合MSDA块和全局多头自注意力块,形成金字塔架构,实现各视觉任务的顶尖性能。与现有最佳模型相比,在ImageNet-1K分类任务上,DilateFormer性能相当但计算成本降低70%,同时在COCO检测/分割和ADE20K语义分割任务上表现优秀。文章还展示了MSDA的创新点,包括多尺度聚合、局部稀疏交互和减少自注意力冗余。此外,
|
5月前
|
计算机视觉
【YOLOv8改进】 AFPN :渐进特征金字塔网络 (论文笔记+引入代码).md
YOLO目标检测专栏介绍了YOLO的有效改进和实战案例,包括AFPN——一种解决特征金字塔网络信息丢失问题的新方法。AFPN通过非相邻层直接融合和自适应空间融合处理多尺度特征,提高检测性能。此外,还展示了YOLOv8中引入的MPDIoU和ASFF模块的代码实现。详情可参考提供的专栏链接。
下一篇
无影云桌面