YOLOv5改进 | 主干网络 | 用EfficientNet卷积替换backbone【教程+代码 】

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: 在YOLOv5的GFLOPs计算量中,卷积占了其中大多数的比列,为了减少计算量,研究人员提出了用EfficientNet代替backbone。本文给大家带来的教程是**将原来的主干网络替换为EfficientNet。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡

在YOLOv5的GFLOPs计算量中,卷积占了其中大多数的比列,为了减少计算量,研究人员提出了用EfficientNet代替backbone。本文给大家带来的教程是将原来的主干网络替换为EfficientNet。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址 YOLOv5改进+入门——持续更新各种有效涨点方法——点击即可跳转

1. 原理

image.png

论文地址:EfficientNet论文点击即可跳转

官方代码:https://github.com/tensorflow/tpu/tree/ master/models/official/efficientnet

EfficientNet 是一个卷积神经网络架构,旨在通过同时调整深度、宽度和分辨率来实现更好的准确性和效率。它由谷歌的Mingxing Tan和Quoc V. Le在题为《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》的论文中提出。

EfficientNet主要的关键组件和概念:

  1. 复合缩放:EfficientNet引入了一种新的缩放方法,该方法使用复合系数均匀地缩放网络宽度、深度和分辨率。传统上,模型是通过简单增加这些维度中的一个来进行缩放的,这可能导致性能不佳。EfficientNet使用复合系数 φ 来统一地缩放这些维度。

  2. 架构设计:EfficientNet从基线网络架构开始,然后使用复合缩放方法进行扩展。基线架构类似于移动反向瓶颈卷积(MBConv)架构,它由带有深度可分离卷积的反向残差块组成。

  3. 深度可分离卷积:EfficientNet广泛使用深度可分离卷积。它将标准卷积操作分解为深度卷积(分别在每个输入通道上操作)后跟点卷积(用于组合输出的1x1卷积)。这样做既减少了计算成本,又保留了表示能力。

  4. 高效缩放:EfficientNet通过高效地缩放网络宽度、深度和分辨率来实现最先进的性能。通过同时缩放所有这些维度,它有效地平衡了模型容量和计算成本。

  5. 模型变种:EfficientNet有几个变种,如EfficientNet-B0到B7,代表不同的缩放级别。B0是最小且计算成本最低的变种,而B7是最大且计算成本最高的变种。

  6. 迁移学习:EfficientNet模型通常在大规模图像数据集(如ImageNet)上预先训练,然后使用较小的数据集进行特定任务的微调。使用EfficientNet的迁移学习在各种计算机视觉任务上都被证明是非常有效的,尤其是在有限的计算资源下达到最先进的性能。

由于其优越的性能和效率平衡,EfficientNet已成为计算机视觉任务的热门选择。其可扩展性使其适用于从手机到云服务器的各种设备,并且仍然能够实现出色的准确性。

image.png

2.代码实现

2.1 将EfficientNet添加到YOLOv5中

关键步骤一: 将下面代码粘贴到/projects/yolov5-6.1/models/common.py文件中
image.png

class stem(nn.Module):
    def __init__(self, c1, c2, act='ReLU6'):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, kernel_size=3, stride=2, padding=1, bias=False)
        self.bn = nn.BatchNorm2d(num_features=c2)
        if act == 'ReLU6':
            self.act = nn.ReLU6(inplace=True)

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

class MBConvBlock(nn.Module):
    def __init__(self, inp, final_oup, k, s, expand_ratio, drop_connect_rate, has_se=False):
        super(MBConvBlock, self).__init__()

        self._momentum = 0.01
        self._epsilon = 1e-3
        self.input_filters = inp
        self.output_filters = final_oup
        self.stride = s
        self.expand_ratio = expand_ratio
        self.has_se = has_se
        self.id_skip = True  # skip connection and drop connect
        se_ratio = 0.25

        # Expansion phase
        oup = inp * expand_ratio  # number of output channels
        if expand_ratio != 1:
            self._expand_conv = nn.Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
            self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._momentum, eps=self._epsilon)

        # Depthwise convolution phase
        self._depthwise_conv = nn.Conv2d(
            in_channels=oup, out_channels=oup, groups=oup,  # groups makes it depthwise
            kernel_size=k, padding=(k - 1) // 2, stride=s, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._momentum, eps=self._epsilon)

        # Squeeze and Excitation layer, if desired
        if self.has_se:
            num_squeezed_channels = max(1, int(inp * se_ratio))
            self.se = SeBlock(oup, 4)

        # Output phase
        self._project_conv = nn.Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
        self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._momentum, eps=self._epsilon)
        self._relu = nn.ReLU6(inplace=True)

        self.drop_connect = drop_connect(drop_connect_rate)

EfficientNet模型的主要流程如下:

  1. 输入图像预处理

    • 输入图像首先会经过预处理步骤,包括归一化、缩放等,以使其适应网络的输入要求。
  2. 特征提取

    • 输入图像通过一系列卷积层和池化层,逐步提取特征。这些卷积层通常采用深度可分离卷积(depthwise separable convolution),这种卷积操作可以显著减少参数数量和计算量,从而提高模型的效率。
  3. 特征放缩(Feature Scaling)

    • 在EfficientNet中,为了适应不同分辨率的输入图像,引入了特征放缩模块。这个模块使用全局平均池化将提取的特征向量转换为固定长度的向量,并通过一个可学习的线性变换(通常是一个1x1卷积层)将其映射到固定维度,以确保网络对于不同分辨率的图像具有一致的性能。
  4. 特征组合

    • 将不同尺度的特征图进行组合,通常采用特征级联或者特征融合的方式,以丰富特征表示能力。
  5. 分类或回归

    • 最后一层是用于分类或回归任务的全连接层或者卷积层。对于分类任务,通常使用softmax激活函数输出类别概率分布;对于回归任务,可以输出边界框的位置或者其他相关信息。
  6. 损失计算和反向传播

    • 使用损失函数计算模型预测值与真实标签之间的差异,常见的损失函数包括交叉熵损失(对于分类任务)和均方误差损失(对于回归任务)等。然后通过反向传播算法更新网络参数,使得损失函数最小化。

    整个流程的关键点在于使用了深度可分离卷积来减少计算量,同时通过宽度/深度/分辨率缩放来平衡模型的复杂度和性能。EfficientNet在保持模型轻量级的同时,能够取得很好的性能表现,因此被广泛应用于计算资源受限的设备和场景中。

2.2 新增yaml文件

关键步骤二:在下/projects/yolov5-6.1/models下新建文件 yolov5_shuffle.yaml并将下面代码复制进去

image.png

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

#  EfficientNetLite backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, stem, [32, 'ReLU6']],             # 0-P1/2  ch_out, act
   [-1, 1, MBConvBlock, [16, 3, 1, 1, 0]],   # 1 ch_out, k_size, s, expand

   [-1, 1, MBConvBlock, [24, 3, 2, 6, 0.028, True]],   # 2-P2/4 ch_out, k_size, s, expand, drop_connect_rate, se
   [-1, 1, MBConvBlock, [24, 3, 1, 6, 0.057]],

   [-1, 1, MBConvBlock, [40, 5, 2, 6, 0.085]],   # 4-P3/8 ch_out, k_size, s, expand, drop_connect_rate, se
   [-1, 1, MBConvBlock, [40, 5, 1, 6, 0.114]],

   [-1, 1, MBConvBlock, [80, 3, 2, 6, 0.142]],   # 6-P4/16 ch_out, k_size, s, expand, drop_connect_rate, se
   [-1, 1, MBConvBlock, [80, 3, 1, 6, 0.171]],
   [-1, 1, MBConvBlock, [80, 3, 1, 6, 0.2]],
   [-1, 1, MBConvBlock, [112, 5, 1, 6, 0.228]],  # 9
   [-1, 1, MBConvBlock, [112, 5, 1, 6, 0.257]],
   [-1, 1, MBConvBlock, [112, 5, 1, 6, 0.285]],




# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 11], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 21

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 25 (P3/8-small)

温馨提示:本文只是对yolov5l基础上添加swin模块,如果要对yolov8n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。

# YOLOv5n
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple

# YOLOv5s
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# YOLOv5l 
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# YOLOv5m
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple

# YOLOv5x
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple

2.3 注册模块

关键步骤:在yolo.py中注册, 大概在260行左右添加 ‘MBConvBlock’和‘stem’

image.png

2.4 执行程序

在train.py中,将cfg的参数路径设置为yolov5_efficient.yaml的路径

建议大家写绝对路径,确保一定能找到
image.png

🚀运行程序,如果出现下面的内容则说明添加成功🚀

image.png

3. 完整代码分享

YOLOv5改进 | 主干网络 | 用EfficientNet卷积替换backbone【教程+代码】——点击即可跳转

提取码: 9wsd

4.GFLOPs对比

未改进的YOLOv5l的GFLOPs

image.png
image.png

GFLOPs减少一半以上

5. 总结

EfficientNet是一种卓越的卷积神经网络架构,通过复合缩放和深度可分离卷积等技术,以及特征放缩模块的引入,实现了在保持高准确性的同时显著提升了模型的效率和性能。其提供的多个预定义模型变种,以及在各种计算机视觉任务中广泛的应用领域,使其成为了业界的热门选择,为图像分类、目标检测和其他相关任务提供了可靠且高效的解决方案。

相关文章
|
15天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
190 55
|
25天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
130 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
28天前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
75 3
图卷积网络入门:数学基础与架构设计
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
212 7
|
1月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
46 1
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
1月前
|
存储 数据可视化 API
重磅干货,免费三方网络验证[用户系统+CDK]全套API接口分享教程。
本套网络验证系统提供全面的API接口,支持用户注册、登录、数据查询与修改、留言板管理等功能,适用于不想自建用户系统的APP开发者。系统还包含CDK管理功能,如生成、使用、查询和删除CDK等。支持高自定义性,包括20个自定义字段,满足不同需求。详细接口参数及示例请参考官方文档。
|
1月前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
49 1

热门文章

最新文章