【YOLOv8改进】Non-Local:基于非局部均值去噪滤波的自注意力模型 (论文笔记+引入代码)

简介: YOLO目标检测专栏探讨了YOLO的创新改进,包括引入非局部操作以捕获远程依赖,增强上下文信息。非局部模块可应用于图像分类、目标检测等任务,尤其适合视频分类。文章介绍了Non-local自注意力模型,通过计算任意位置间交互,提供全局信息。此外,展示了如何在YOLOv8中实现NLBlockND模块。详细内容及实战配置见相关链接。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

摘要

卷积和循环神经网络中的操作都是一次处理一个局部邻域,在这篇文章中,作者提出了一个非局部的操作来作为捕获远程依赖的通用模块。
受计算机视觉中经典的非局部均值方法启发,我们的非局部操作计算某一位置的响应为所有位置特征的加权和。而且,这个模块可以插入到许多计算机视觉网络架构中去。

创新点

  • 提出的non-local operations通过计算任意两个位置之间的交互直接捕捉远程依赖,而不用局限于相邻点,其相当于构造了一个和特征图谱尺寸一样大的卷积核, 从而可以维持更多信息。
  • non-local可以作为一个组件,和其它网络结构结合,经过作者实验,证明了其可以应用于图像分类、目标检测、目标分割、姿态识别等视觉任务中,并且效果不错。
  • Non-local在视频分类上效果很好,倾向于使用在视频分类这个领域中。

    1. Non-local自注意力模型

Non-Local是由王小龙等人在2018年的计算机视觉与模式识别会议(CVPR 2018)提出的一种自注意力模型。该模型的灵感来源于非局部均值去噪滤波(Non-Local Means),它不同于传统的基于小区域(如3×3卷积核)的滤波方法。Non-Local操作通过在更大的搜索范围内进行加权,从而捕捉更广泛的上下文信息。更多细节可以参考这篇博客

在Non-Local神经网络(NN)中,'Local'指的是与卷积神经网络中的感受野相关的概念。传统卷积层的感受野通常有限(如3×3或5×5),而Non-Local模块允许感受野覆盖整个输入空间,从而实现全局信息的整合。

Non-Local模块与其他注意力机制模块(如CBAM、SE、BAM、SK)相似,都是可插拔的组件,用于对特征图进行信息细化(refinement)。它是一种有效的注意力机制实现,不过其理论基础更为丰富,可能会相对复杂和难以理解。

Non-local的通用公式:

  • $x$ 是输入信号,通常是特征图(feature map)。

  • $i$ 表示输出位置的索引,响应值是通过对所有可能的$j$位置加权求和得到的。

  • $f$ 是一个函数,用于计算位置$i$和$j$之间的相似度。

  • $g$ 是一个函数,用于在位置$j$计算特征图的表示。

  • $y$ 是经过响应因子$C(x)$标准化处理后得到的输出。

image

yolov8 引入

class NLBlockND(nn.Module):
    def __init__(self, in_channels, inter_channels=None, mode='embedded', 
                 dimension=2, bn_layer=True):
        """
        非局部(Non-Local)模块的实现,包含四种不同的成对函数,但不包括子采样技巧。
        参数:
            in_channels: 输入通道数(论文中为1024)
            inter_channels: 模块内部的通道数,如果未指定,则减半(论文中为512)
            mode: 支持高斯、嵌入式高斯、点积和连接四种模式
            dimension: 可以是1(时间维度),2(空间维度),3(时空维度)
            bn_layer: 是否添加批量归一化层
        """
        super(NLBlockND, self).__init__()

        assert dimension in [1, 2, 3]

        if mode not in ['gaussian', 'embedded', 'dot', 'concatenate']:
            raise ValueError('`mode` 必须是 `gaussian`, `embedded`, `dot` 或 `concatenate` 中的一个')

        self.mode = mode
        self.dimension = dimension

        self.in_channels = in_channels
        self.inter_channels = inter_channels

        # 在模块内部,通道数减半
        if self.inter_channels is None:
            self.inter_channels = in_channels // 2
            if self.inter_channels == 0:
                self.inter_channels = 1

        # 根据不同的维度分配适当的卷积、最大池化和批量归一化层
        if dimension == 3:
            conv_nd = nn.Conv3d
            max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2))
            bn = nn.BatchNorm3d
        elif dimension == 2:
            conv_nd = nn.Conv2d
            max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2))
            bn = nn.BatchNorm2d
        else:
            conv_nd = nn.Conv1d
            max_pool_layer = nn.MaxPool1d(kernel_size=(2))
            bn = nn.BatchNorm1d

        # 论文中的函数g,通过1x1的卷积核进行卷积
        self.g = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1)

        # 在最后一个卷积层后添加BatchNorm层
        if bn_layer:
            self.W_z = nn.Sequential(
                conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels, kernel_size=1),
                bn(self.in_channels)
            )
            # 根据论文第4.1节,初始化BN参数以确保非局部模块的初始状态是恒等映射
            nn.init.constant_(self.W_z[1].weight, 0)
            nn.init.constant_(self.W_z[1].bias, 0)
        else:
            self.W_z = conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels, kernel_size=1)

            # 根据论文第3.3节,通过将Wz初始化为0,这个模块可以被插入到任何现有的架构中
            nn.init.constant_(self.W_z.weight, 0)
            nn.init.constant_(self.W_z.bias, 0)

        # 为高斯以外的所有操作定义theta和phi
        if self.mode in ["embedded", "dot", "concatenate"]:
            self.theta = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1)
            self.phi = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1)

        if self.mode == "concatenate":
            self.W_f = nn.Sequential(
                nn.Conv2d(in_channels=self.inter_channels * 2, out_channels=1, kernel_size=1),
                nn.ReLU()
            )

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/139105131

相关文章
|
4月前
|
机器学习/深度学习 安全 固态存储
【YOLOv8改进 - 注意力机制】LS-YOLO MSFE:新颖的多尺度特征提取模块 | 小目标/遥感
YOLO系列目标检测模型的新发展,LS-YOLO专为滑坡检测设计。它使用多尺度滑坡数据集(MSLD)和多尺度特征提取(MSFE)模块,结合ECA注意力,提升定位精度。通过改进的解耦头,利用膨胀卷积增强上下文信息。在滑坡检测任务中,LS-YOLO相对于YOLOv5s的AP提高了2.18%,达到97.06%。论文和代码已开源。
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv10改进-注意力机制】 MSDA:多尺度空洞注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了ViT的改进,提出DilateFormer,它结合多尺度扩张注意力(MSDA)来平衡计算效率和关注域大小。MSDA利用局部稀疏交互减少冗余,通过不同头部的扩张率捕获多尺度特征。DilateFormer在保持高性能的同时,计算成本降低70%,在ImageNet-1K、COCO和ADE20K任务上取得领先结果。YOLOv8引入了MultiDilatelocalAttention模块,用于实现膨胀注意力。更多详情及配置见相关链接。
|
5月前
|
机器学习/深度学习 算法 计算机视觉
没有公式,不要代码,让你理解 RCNN:目标检测中的区域卷积神经网络
没有公式,不要代码,让你理解 RCNN:目标检测中的区域卷积神经网络
100 0
没有公式,不要代码,让你理解 RCNN:目标检测中的区域卷积神经网络
|
5月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进】D-LKA Attention:可变形大核注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了Transformer在医学图像分割的进展,但计算需求限制了模型的深度和分辨率。为此,提出了可变形大核注意力(D-LKA Attention),它使用大卷积核捕捉上下文信息,通过可变形卷积适应数据模式变化。D-LKA Net结合2D和3D版本的D-LKA Attention,提升了医学分割性能。YOLOv8引入了可变形卷积层以增强目标检测的准确性。相关代码和任务配置可在作者博客找到。
|
6月前
|
计算机视觉
【YOLOv8改进】 MSDA:多尺度空洞注意力 (论文笔记+引入代码)
该文介绍了DilateFormer,一种新提出的视觉变换器,它在计算效率和关注接受域之间取得平衡。通过分析ViTs,发现浅层的局部性和稀疏性,提出了多尺度扩张注意力(MSDA),用于局部、稀疏的块交互。DilateFormer结合MSDA块和全局多头自注意力块,形成金字塔架构,实现各视觉任务的顶尖性能。与现有最佳模型相比,在ImageNet-1K分类任务上,DilateFormer性能相当但计算成本降低70%,同时在COCO检测/分割和ADE20K语义分割任务上表现优秀。文章还展示了MSDA的创新点,包括多尺度聚合、局部稀疏交互和减少自注意力冗余。此外,
|
6月前
|
计算机视觉
【YOLOv8改进】 AFPN :渐进特征金字塔网络 (论文笔记+引入代码).md
YOLO目标检测专栏介绍了YOLO的有效改进和实战案例,包括AFPN——一种解决特征金字塔网络信息丢失问题的新方法。AFPN通过非相邻层直接融合和自适应空间融合处理多尺度特征,提高检测性能。此外,还展示了YOLOv8中引入的MPDIoU和ASFF模块的代码实现。详情可参考提供的专栏链接。
|
6月前
|
机器学习/深度学习 测试技术 网络架构
【YOLOv8改进】MSCA: 多尺度卷积注意力 (论文笔记+引入代码).md
SegNeXt是提出的一种新的卷积网络架构,专注于语义分割任务,它证明了卷积注意力在编码上下文信息上优于自注意力机制。该模型通过结合深度卷积、多分支深度卷积和1x1逐点卷积实现高效性能提升。在多个基准测试中,SegNeXt超越了现有最佳方法,如在Pascal VOC 2012上达到90.6%的mIoU,参数量仅为EfficientNet-L2 w/ NAS-FPN的1/10。此外,它在ADE20K数据集上的mIoU平均提高了2.0%,同时保持相同的计算量。YOLOv8中引入了名为MSCAAttention的模块,以利用这种多尺度卷积注意力机制。更多详情和配置可参考相关链接。
|
6月前
|
编解码 计算机视觉 网络架构
【YOLOv8改进】BiFPN:加权双向特征金字塔网络 (论文笔记+引入代码)
该专栏深入研究了YOLO目标检测的神经网络架构优化,提出了加权双向特征金字塔网络(BiFPN)和复合缩放方法,以提升模型效率。BiFPN通过双向跨尺度连接和加权融合增强信息传递,同时具有自适应的网络拓扑结构。结合EfficientNet,构建了EfficientDet系列检测器,在效率和准确性上超越先前技术。此外,介绍了YOLOv8如何引入MPDIoU并应用BiFPN进行可学习权重的特征融合。更多详情可参考提供的专栏链接。
|
6月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】MPDIoU:有效和准确的边界框损失回归函数 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO的有效改进和实战案例,包括卷积、主干网络、注意力机制和检测头的创新。提出了一种新的边界框回归损失函数MPDIoU,它基于最小点距离,能更好地处理不同宽高比的预测框,包含重叠、中心点距离和尺寸偏差的全面考虑。MPDIoU损失函数在YOLACT和YOLOv7等模型上的实验显示了优于现有损失函数的性能。此外,还介绍了WIoU_Scale类用于计算加权IoU,以及bbox_iou函数实现不同IoU变体的计算。详细实现和配置可在相应链接中查阅。
|
6月前
|
机器学习/深度学习 并行计算
YOLOv8改进 | ODConv卷积助力极限涨点(附修改后的C2f、Bottleneck模块代码)
YOLOv8改进 | ODConv卷积助力极限涨点(附修改后的C2f、Bottleneck模块代码)
482 0