引言
二分查找算法是比较早期时候接触到的算法,这种算法有两个要求,一个是要求是顺序存储结构,其实就是数组,另一个是要查找的表要按照大小有序排列。
代码讨论
轻量级查找
我们先看下最基础的查找,基本思想就是从一个数组上面挨个找,找到了就返回:
public static int find_v1(int[] arr, int targetValue) { int targetIndex = -1; int times = 0; for (int i = 0; i < arr.length; i++) { times++; if (arr[i] == targetValue) { targetIndex = i; break; } } if (targetIndex != -1) { System.out.println("find_v1找到目标值下标:arr[" + targetIndex + "]=" + targetValue + ",查找次数为:" + times); } else { System.out.println("find_v1没有找到值"); } return targetIndex; }
二分法的引入
二分法的思想是把数据一分为二,因为数组上面的数据其实是有序的,所以可以提前判断要找的目标数据是在前半段还是后半段:
public static int find_v2(int[] arr, int targetValue) { int targetIndex = -1; int times = 0; int low = 0; int high = arr.length - 1; while (low <= high) { times++; int mid = low+(high - low) / 2; if (arr[mid] == targetValue) { targetIndex = mid; break; } else if(targetValue > arr[mid]){ low = mid+1; }else{ high = mid-1; } } if (targetIndex != -1) { System.out.println("find_v2找到目标值下标:arr[" + targetIndex + "]=" + targetValue + ",查找次数为:" + times); } else { System.out.println("find_v2没有找到值"); } return targetIndex; }
二分查找中的核心就是 int mid = low+(high - low) / 2,low我们可以理解为下界,high是我们查找范围的上界,自然来说high-low其实是我们查找的范围,画图表示其实就是:
我们其实可以把mid表示为mid=low+(high - low) *1/2,在这里1/2只是一个比率,我们其实可以看到目标数据在靠后一点点,不在中间范围内。我们其实可以进一步考虑,这个切割的时候靠中间往后切一点是不是比较合适,更加极端的,我们假如就是237,500的地方,是不是比率直接变成0.8会比较合适。
这个便是我们改进算法的思想,我们求出这个分布的比率,可以进一步缩小查找的范围,关键代码如下,我们是求目标值与全局查找的范围求得我们数据的比率:
double rate=(targetValue-arr[low])*1.0/(arr[high]-arr[low]); int mid = (int)(low+(high - low)* rate);
完整代码如下:
public static int find_v3(int[] arr, int targetValue) { int targetIndex = -1; int times = 0; int low = 0; int high = arr.length - 1; while (low < high) { times++; double rate=(targetValue-arr[low])*1.0/(arr[high]-arr[low]); System.out.printf("rate:%.20f\n",rate); int mid = (int)(low+(high - low)* rate); System.out.println("high="+high+" low="+low+" mid="+mid); if (arr[mid] == targetValue) { targetIndex = mid; break; } else if(targetValue > arr[mid]){ low = mid+1; }else{ high = mid-1; } } if (targetIndex != -1) { System.out.println("find_v3找到目标值下标:arr[" + targetIndex + "]=" + targetValue + ",查找次数为:" + times); } else { System.out.println("find_v3没有找到值"); } return targetIndex; }
三种情况测试对比:
public static void main(String[] args) { int[] array = {1, 3, 4, 6, 7, 89, 234, 235, 236, 237, 500, 501, 502, 503, 504}; System.out.println(Arrays.toString(array)); System.out.printf("rate:%.20f\n",501*1.0/502); searchAll(array,501); searchAll(array,502); searchAll(array,89); searchAll(array,7); } public static void searchAll(int[] array,int targetValue){ System.out.println("searchAll begin..."); find_v1(array, targetValue); find_v2(array, targetValue); find_v3(array, targetValue); System.out.println("searchAll end..."); }
[1, 3, 4, 6, 7, 89, 234, 235, 236, 237, 500, 501, 502, 503, 504] rate:0.99800796812749000000 searchAll begin... find_v1找到目标值下标:arr[11]=501,查找次数为:12 find_v2找到目标值下标:arr[11]=501,查找次数为:2 rate:0.99403578528827040000 high=14 low=0 mid=13 rate:0.99800399201596800000 high=12 low=0 mid=11 find_v3找到目标值下标:arr[11]=501,查找次数为:2 searchAll end... searchAll begin... find_v1找到目标值下标:arr[12]=502,查找次数为:13 find_v2找到目标值下标:arr[12]=502,查找次数为:4 rate:0.99602385685884690000 high=14 low=0 mid=13 rate:1.00000000000000000000 high=12 low=0 mid=12 find_v3找到目标值下标:arr[12]=502,查找次数为:2 searchAll end... searchAll begin... find_v1找到目标值下标:arr[5]=89,查找次数为:6 find_v2找到目标值下标:arr[5]=89,查找次数为:3 rate:0.17495029821073560000 high=14 low=0 mid=2 rate:0.16666666666666666000 high=14 low=3 mid=4 rate:0.00000000000000000000 high=14 low=5 mid=5 find_v3找到目标值下标:arr[5]=89,查找次数为:3 searchAll end... searchAll begin... find_v1找到目标值下标:arr[4]=7,查找次数为:5 find_v2找到目标值下标:arr[4]=7,查找次数为:4 rate:0.01192842942345924400 high=14 low=0 mid=0 rate:0.00798403193612774400 high=14 low=1 mid=1 rate:0.00600000000000000000 high=14 low=2 mid=2 rate:0.00200803212851405600 high=14 low=3 mid=3 rate:0.00000000000000000000 high=14 low=4 mid=4 find_v3找到目标值下标:arr[4]=7,查找次数为:5 searchAll end...