分布式一致性必备:一文读懂Raft算法

简介: Raft算法是一种用于分布式系统中复制日志一致性管理的算法。它通过选举领导者来协调日志复制,确保所有节点数据一致。算法包括心跳机制、选举过程、日志复制和一致性保证。当领导者失效时,节点会重新选举,保证高可用性。Raft易于理解和实现,提供强一致性,常用于分布式数据库和协调服务。作者小米分享了相关知识,鼓励对分布式系统感兴趣的读者进一步探索。

大家好!我是小米,一个热爱分享技术的29岁程序员哥哥。今天我们来聊聊分布式系统中的一个重要算法——Raft。这个算法专门用于管理分布式系统中复制日志的一致性。听起来可能有点复杂,但别担心,我会尽量用简单易懂的方式讲解清楚。

Raft算法概述

Raft是一种用于管理复制日志的一致性算法,旨在解决分布式系统中多个节点之间的数据一致性问题。它通过选举一个领导者(Leader),让领导者负责管理和协调日志复制,确保所有节点的数据一致。

1. 复制日志

在分布式系统中,每个节点都维护着一份日志,记录系统操作的历史。为了保证数据一致性,这些日志需要在所有节点之间保持同步。Raft通过领导者选举和日志复制机制,确保所有节点的日志最终是一致的。

2. 心跳机制与选举

Raft使用心跳机制来触发选举。当系统启动时,每个节点(Server)的初始状态都是追随者(Follower)。每个Server都有一个定时器,超时时间为选举超时(Election Timeout),一般为150-300毫秒。如果一个Server在超时时间内没有收到来自领导者或候选者的任何消息,定时器会重启,并开始一次选举。

3. 选举过程

当一个追随者节点发现自己超过选举超时没有收到领导者的消息,就会变为候选者(Candidate),并开始新一轮选举。候选者节点会增加自己的任期号,并向其他节点发送选票请求。每个节点只能在一个任期内投一票,并且通常会将票投给第一个请求投票的候选者。如果一个候选人在收到足够多的选票后,就成为新的领导者。

4. 多个候选者

在选举过程中,可能会出现多个候选者同时竞争领导者的位置。这时,如果某个候选者无法在选举超时前获得大多数节点的支持,选举就会失败。失败后,所有候选者会重置自己的定时器,并在下一轮超时后再次发起选举,直到选出新的领导者为止。

Raft算法的工作机制

了解了Raft的基本概念和选举过程,我们再来详细看看它是如何工作的。

1. 领导者(Leader)选举

当系统启动或当前领导者失效时,节点会发起选举。选举过程中,每个节点可能会收到多个候选者的请求,最终只有一个候选者能够成为领导者。选举完成后,新的领导者开始负责管理日志复制,并通过发送心跳消息来维持自己的领导地位。

2. 日志复制

领导者接收到客户端的写请求后,会将请求以日志条目的形式追加到自己的日志中。然后,领导者并行地将这个日志条目发送给其他节点(追随者)。只有当日志条目在大多数节点上都被复制成功后,领导者才会将该条目应用到自己的状态机,并向客户端返回成功响应。

3. 日志一致性

为了保证日志的一致性,Raft算法引入了几个机制:

  • 心跳(Heartbeat): 领导者会定期发送心跳消息给其他节点,告知自己依然是领导者,并防止其他节点发起新的选举。
  • 日志匹配(Log Matching): 领导者在复制日志条目时,会附带上前一个日志条目的索引和任期。其他节点在接收到日志条目时,会检查本地日志是否匹配,如果不匹配则拒绝该条目并要求领导者重新发送匹配的日志条目。
  • 日志提交(Commit): 领导者会跟踪已被大多数节点复制的日志条目,并将这些条目标记为已提交。已提交的条目会被应用到各节点的状态机中。

4. 处理异常情况

  • 领导者异常:当当前领导者出现异常(如崩溃或网络故障)时,追随者节点会在选举超时后发起选举,选出新的领导者。新的领导者会与其他节点比较日志步长(即日志条目的数量),确保所有节点的日志保持一致。
  • 追随者异常:当追随者节点出现异常(如崩溃或网络故障)后恢复时,它会直接与当前的领导者同步,获取最新的日志条目,并将自己的日志更新到最新状态。
  • 多个候选者:在选举过程中,如果出现多个候选者,选举可能会失败。这时,所有候选者会重置自己的定时器,并在下一轮超时后再次发起选举,直到选出新的领导者为止。

Raft算法的实现

实现Raft算法并不复杂,但要保证其正确性和效率,需要注意以下几点:

1. 节点状态

每个Raft节点都有三种状态:领导者(Leader)、候选者(Candidate)和追随者(Follower)。系统初始化时,所有节点都是追随者。

2. 领导者选举

当一个追随者节点在一定时间内没有收到领导者的心跳消息,它会转变为候选者,并开始新一轮选举。候选者节点会增加自己的任期号,并向其他节点发送选票请求。每个节点只能在一个任期内投一票,且会将票投给第一个请求投票的候选者。若候选人在收到足够多的选票后,会成为新的领导者。

3. 日志复制

领导者在接收到客户端请求后,会将请求转换为日志条目,并将其追加到本地日志中。随后,领导者会将日志条目发送给其他追随者节点,并等待追随者的确认。只有当日志条目被大多数节点确认后,领导者才会将其标记为已提交,并将结果返回给客户端。

4. 日志一致性

领导者在发送日志条目时,会附带上前一个日志条目的索引和任期,追随者节点在接收到日志条目后,会检查本地日志是否匹配。如果匹配则追加日志条目,否则拒绝该条目并要求领导者重新发送匹配的日志条目。

5. 日志提交

领导者会跟踪已被大多数节点复制的日志条目,并将这些条目标记为已提交。已提交的条目会被应用到各节点的状态机中。

Raft算法的优势

1. 易于理解

Raft算法相对于Paxos来说,更加直观和易于理解。它通过明确的领导者选举和日志复制机制,简化了一致性问题的处理。

2. 高可用性

Raft算法能够快速选出新的领导者,并保证系统的高可用性。只要大多数节点是正常的,系统就能继续处理客户端请求。

3. 强一致性

通过严格的日志匹配和日志提交机制,Raft算法保证了系统的强一致性。即使在网络分区和节点故障的情况下,仍能保证数据的一致性。

Raft算法的应用场景

Raft算法广泛应用于需要高可用性和高可靠性的分布式系统中,如分布式数据库、分布式文件系统和分布式协调服务等。著名的开源项目如etcd和Consul,都使用了Raft算法来保证数据的一致性和系统的可靠性。

END

Raft算法通过简单而高效的领导者选举和日志复制机制,解决了分布式系统中的一致性问题。它不仅易于理解和实现,还能够提供高可用性和强一致性。因此,Raft算法在实际应用中得到了广泛的认可和应用。

希望今天的分享能帮助大家更好地理解Raft算法。如果你对分布式系统和一致性算法有更多的兴趣,欢迎在评论区和我交流哦!我们下期再见!

本文作者:小米,一个热爱技术分享的29岁程序员。如果你喜欢我的文章,欢迎关注我的微信公众号软件求生,获取更多技术干货!

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
3天前
|
存储 缓存 算法
分布式缓存有哪些常用的数据分片算法?
【10月更文挑战第25天】在实际应用中,需要根据具体的业务需求、数据特征以及系统的可扩展性要求等因素综合考虑,选择合适的数据分片算法,以实现分布式缓存的高效运行和数据的合理分布。
|
3天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
24天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
29天前
|
算法
raft算法的自我理解
本文介绍了Raft算法的基本概念和工作原理,包括它如何通过日志复制和领导选举来实现分布式系统中不同机器的强一致性。
23 2
|
24天前
|
消息中间件 缓存 算法
分布式系列第一弹:分布式一致性!
分布式系列第一弹:分布式一致性!
|
25天前
|
算法 Java 关系型数据库
漫谈分布式数据复制和一致性!
漫谈分布式数据复制和一致性!
|
3月前
|
Oracle 关系型数据库
分布式锁设计问题之Oracle RAC保证多个节点写入内存Page的一致性如何解决
分布式锁设计问题之Oracle RAC保证多个节点写入内存Page的一致性如何解决
|
3月前
|
消息中间件 存储 监控
消息队列在分布式系统中如何保证数据的一致性和顺序?
消息队列在分布式系统中如何保证数据的一致性和顺序?
|
18天前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
3月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
102 2
基于Redis的高可用分布式锁——RedLock

热门文章

最新文章