分布式一致性必备:一文读懂Raft算法

本文涉及的产品
轻量应用服务器 2vCPU 1GiB,适用于搭建电商独立站
轻量应用服务器 2vCPU 4GiB,适用于搭建Web应用/小程序
轻量应用服务器 2vCPU 4GiB,适用于网站搭建
简介: Raft算法是一种用于分布式系统中复制日志一致性管理的算法。它通过选举领导者来协调日志复制,确保所有节点数据一致。算法包括心跳机制、选举过程、日志复制和一致性保证。当领导者失效时,节点会重新选举,保证高可用性。Raft易于理解和实现,提供强一致性,常用于分布式数据库和协调服务。作者小米分享了相关知识,鼓励对分布式系统感兴趣的读者进一步探索。

大家好!我是小米,一个热爱分享技术的29岁程序员哥哥。今天我们来聊聊分布式系统中的一个重要算法——Raft。这个算法专门用于管理分布式系统中复制日志的一致性。听起来可能有点复杂,但别担心,我会尽量用简单易懂的方式讲解清楚。

Raft算法概述

Raft是一种用于管理复制日志的一致性算法,旨在解决分布式系统中多个节点之间的数据一致性问题。它通过选举一个领导者(Leader),让领导者负责管理和协调日志复制,确保所有节点的数据一致。

1. 复制日志

在分布式系统中,每个节点都维护着一份日志,记录系统操作的历史。为了保证数据一致性,这些日志需要在所有节点之间保持同步。Raft通过领导者选举和日志复制机制,确保所有节点的日志最终是一致的。

2. 心跳机制与选举

Raft使用心跳机制来触发选举。当系统启动时,每个节点(Server)的初始状态都是追随者(Follower)。每个Server都有一个定时器,超时时间为选举超时(Election Timeout),一般为150-300毫秒。如果一个Server在超时时间内没有收到来自领导者或候选者的任何消息,定时器会重启,并开始一次选举。

3. 选举过程

当一个追随者节点发现自己超过选举超时没有收到领导者的消息,就会变为候选者(Candidate),并开始新一轮选举。候选者节点会增加自己的任期号,并向其他节点发送选票请求。每个节点只能在一个任期内投一票,并且通常会将票投给第一个请求投票的候选者。如果一个候选人在收到足够多的选票后,就成为新的领导者。

4. 多个候选者

在选举过程中,可能会出现多个候选者同时竞争领导者的位置。这时,如果某个候选者无法在选举超时前获得大多数节点的支持,选举就会失败。失败后,所有候选者会重置自己的定时器,并在下一轮超时后再次发起选举,直到选出新的领导者为止。

Raft算法的工作机制

了解了Raft的基本概念和选举过程,我们再来详细看看它是如何工作的。

1. 领导者(Leader)选举

当系统启动或当前领导者失效时,节点会发起选举。选举过程中,每个节点可能会收到多个候选者的请求,最终只有一个候选者能够成为领导者。选举完成后,新的领导者开始负责管理日志复制,并通过发送心跳消息来维持自己的领导地位。

2. 日志复制

领导者接收到客户端的写请求后,会将请求以日志条目的形式追加到自己的日志中。然后,领导者并行地将这个日志条目发送给其他节点(追随者)。只有当日志条目在大多数节点上都被复制成功后,领导者才会将该条目应用到自己的状态机,并向客户端返回成功响应。

3. 日志一致性

为了保证日志的一致性,Raft算法引入了几个机制:

  • 心跳(Heartbeat): 领导者会定期发送心跳消息给其他节点,告知自己依然是领导者,并防止其他节点发起新的选举。
  • 日志匹配(Log Matching): 领导者在复制日志条目时,会附带上前一个日志条目的索引和任期。其他节点在接收到日志条目时,会检查本地日志是否匹配,如果不匹配则拒绝该条目并要求领导者重新发送匹配的日志条目。
  • 日志提交(Commit): 领导者会跟踪已被大多数节点复制的日志条目,并将这些条目标记为已提交。已提交的条目会被应用到各节点的状态机中。

4. 处理异常情况

  • 领导者异常:当当前领导者出现异常(如崩溃或网络故障)时,追随者节点会在选举超时后发起选举,选出新的领导者。新的领导者会与其他节点比较日志步长(即日志条目的数量),确保所有节点的日志保持一致。
  • 追随者异常:当追随者节点出现异常(如崩溃或网络故障)后恢复时,它会直接与当前的领导者同步,获取最新的日志条目,并将自己的日志更新到最新状态。
  • 多个候选者:在选举过程中,如果出现多个候选者,选举可能会失败。这时,所有候选者会重置自己的定时器,并在下一轮超时后再次发起选举,直到选出新的领导者为止。

Raft算法的实现

实现Raft算法并不复杂,但要保证其正确性和效率,需要注意以下几点:

1. 节点状态

每个Raft节点都有三种状态:领导者(Leader)、候选者(Candidate)和追随者(Follower)。系统初始化时,所有节点都是追随者。

2. 领导者选举

当一个追随者节点在一定时间内没有收到领导者的心跳消息,它会转变为候选者,并开始新一轮选举。候选者节点会增加自己的任期号,并向其他节点发送选票请求。每个节点只能在一个任期内投一票,且会将票投给第一个请求投票的候选者。若候选人在收到足够多的选票后,会成为新的领导者。

3. 日志复制

领导者在接收到客户端请求后,会将请求转换为日志条目,并将其追加到本地日志中。随后,领导者会将日志条目发送给其他追随者节点,并等待追随者的确认。只有当日志条目被大多数节点确认后,领导者才会将其标记为已提交,并将结果返回给客户端。

4. 日志一致性

领导者在发送日志条目时,会附带上前一个日志条目的索引和任期,追随者节点在接收到日志条目后,会检查本地日志是否匹配。如果匹配则追加日志条目,否则拒绝该条目并要求领导者重新发送匹配的日志条目。

5. 日志提交

领导者会跟踪已被大多数节点复制的日志条目,并将这些条目标记为已提交。已提交的条目会被应用到各节点的状态机中。

Raft算法的优势

1. 易于理解

Raft算法相对于Paxos来说,更加直观和易于理解。它通过明确的领导者选举和日志复制机制,简化了一致性问题的处理。

2. 高可用性

Raft算法能够快速选出新的领导者,并保证系统的高可用性。只要大多数节点是正常的,系统就能继续处理客户端请求。

3. 强一致性

通过严格的日志匹配和日志提交机制,Raft算法保证了系统的强一致性。即使在网络分区和节点故障的情况下,仍能保证数据的一致性。

Raft算法的应用场景

Raft算法广泛应用于需要高可用性和高可靠性的分布式系统中,如分布式数据库、分布式文件系统和分布式协调服务等。著名的开源项目如etcd和Consul,都使用了Raft算法来保证数据的一致性和系统的可靠性。

END

Raft算法通过简单而高效的领导者选举和日志复制机制,解决了分布式系统中的一致性问题。它不仅易于理解和实现,还能够提供高可用性和强一致性。因此,Raft算法在实际应用中得到了广泛的认可和应用。

希望今天的分享能帮助大家更好地理解Raft算法。如果你对分布式系统和一致性算法有更多的兴趣,欢迎在评论区和我交流哦!我们下期再见!

本文作者:小米,一个热爱技术分享的29岁程序员。如果你喜欢我的文章,欢迎关注我的微信公众号软件求生,获取更多技术干货!

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
相关文章
|
1月前
|
数据采集 监控 NoSQL
优化分布式采集的数据同步:一致性、去重与冲突解决的那些坑与招
本文讲述了作者在房地产数据采集项目中遇到的分布式数据同步问题,通过实施一致性、去重和冲突解决的“三板斧”策略,成功解决了数据重复和同步延迟问题,提高了系统稳定性。核心在于时间戳哈希保证一致性,URL归一化和布隆过滤器确保去重,分布式锁解决写入冲突。
134 2
 优化分布式采集的数据同步:一致性、去重与冲突解决的那些坑与招
|
1月前
|
消息中间件 运维 监控
《聊聊分布式》BASE理论 分布式系统可用性与一致性的工程平衡艺术
BASE理论是对CAP定理中可用性与分区容错性的实践延伸,通过“基本可用、软状态、最终一致性”三大核心,解决分布式系统中ACID模型的性能瓶颈。它以业务为导向,在保证系统高可用的同时,合理放宽强一致性要求,并借助补偿机制、消息队列等技术实现数据最终一致,广泛应用于电商、社交、外卖等大规模互联网场景。
|
2月前
|
负载均衡 算法 调度
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
179 11
|
2月前
|
算法 安全 Python
【顶级EI复现】分布式电源选址定容的多目标优化算法(Matlab代码实现)
【顶级EI复现】分布式电源选址定容的多目标优化算法(Matlab代码实现)
126 1
|
2月前
|
传感器 机器学习/深度学习 算法
【无人机编队】基于麻雀算法分布式无人机群自适应航迹规划和碰撞检测研究(Matlab代码实现)
【无人机编队】基于麻雀算法分布式无人机群自适应航迹规划和碰撞检测研究(Matlab代码实现)
|
2月前
|
并行计算 算法 调度
基于串行并行ADMM算法的主从配电网分布式优化控制研究(Matlab代码实现)
基于串行并行ADMM算法的主从配电网分布式优化控制研究(Matlab代码实现)
220 0
|
2月前
|
并行计算 算法 安全
【ADMM、碳排放】基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究【IEEE6节点、IEEE30节点、IEEE118节点】(Matlab代码实现)
【ADMM、碳排放】基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究【IEEE6节点、IEEE30节点、IEEE118节点】(Matlab代码实现)
177 0
|
3月前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
326 2
|
3月前
|
存储 缓存 NoSQL
【📕分布式锁通关指南 12】源码剖析redisson如何利用Redis数据结构实现Semaphore和CountDownLatch
本文解析 Redisson 如何通过 Redis 实现分布式信号量(RSemaphore)与倒数闩(RCountDownLatch),利用 Lua 脚本与原子操作保障分布式环境下的同步控制,帮助开发者更好地理解其原理与应用。
262 6
|
4月前
|
存储 缓存 NoSQL
Redis核心数据结构与分布式锁实现详解
Redis 是高性能键值数据库,支持多种数据结构,如字符串、列表、集合、哈希、有序集合等,广泛用于缓存、消息队列和实时数据处理。本文详解其核心数据结构及分布式锁实现,帮助开发者提升系统性能与并发控制能力。

热门文章

最新文章