神经网络

简介: “【5月更文挑战第26天】”

神经网络(R-CNN)、You Only Look Once (YOLO)和全卷积网络(FCN)是几个非常著名的模型,它们各自在图像识别的不同方面取得了显著的成就。

  1. 区域卷积神经网络(R-CNN)

    • R-CNN是一种用于目标检测的深度学习模型,由Ross Girshick等人于2014年提出。
    • 它首先使用选择性搜索算法在图像中生成约2000个可能包含目标对象的区域。
    • 然后,这些区域被卷积神经网络(通常是AlexNet)提取特征。
    • 接着,使用SVM分类器对这些特征进行分类,确定它们是否包含特定的对象。
    • R-CNN在目标检测任务上取得了很好的效果,但计算成本较高,因为它需要对每个区域独立运行CNN。
  2. You Only Look Once (YOLO)

    • YOLO是一种非常快速的目标检测系统,由Joseph Redmon等人于2015年提出。
    • YOLO的核心思想是将目标检测任务视为一个回归问题,直接在图像中预测边界框和类别概率。
    • 它将整个图像通过单个CNN处理,然后在整个图像上划分网格,每个网格负责预测中心点落在该网格内的对象。
    • YOLO速度快,能够在实时环境中进行目标检测,但相比于R-CNN,其精度略低。
  3. 全卷积网络(FCN)

    • FCN是一种用于图像分割的深度学习模型,由Jonathan Long等人于2015年提出。
    • 它将传统的CNN用于分类的全连接层转换为卷积层,使得网络能够输出与输入图像相同分辨率的分割图。
    • FCN可以用于语义分割,即对图像中的每个像素进行分类,确定它们属于哪个类别。
    • FCN在图像分割任务上取得了突破性进展,为后续的图像分割研究奠定了基础。

这些模型各有优势,适用于不同的应用场景。R-CNN及其后续改进版本(如Fast R-CNN和Faster R-CNN)在目标检测领

目录
相关文章
|
机器学习/深度学习 网络架构
神经网络4
与单层神经网络不同。理论证明,两层神经网络可以无限逼近任意连续函数。 这是什么意思呢?也就是说,面对复杂的非线性分类任务,两层(带一个隐藏层)神经网络可以分类的很好。 下面就是一个例子(此两图来自colah的博客),红色的线与蓝色的线代表数据。而红色区域和蓝色区域代表由神经网络划开的区域,两者的分界线就是决策分界。 可以看到,这个两层神经网络的决策分界是非常平滑的曲线,而且分类的很好。有趣的是,前面已经学到过,单层网络只能做线性分类任务。而两层神经网络中的后一层也是线性分类层,应该只能做线性分类任务。为什么两个线性分类任务结合就可以做非线性分类任务? 我们可以把输出层的决策分界单独拿出来看一下
86 0
|
7月前
|
机器学习/深度学习 存储 算法
简单的神经网络
softmax激活函数将多个未归一化的值转换为概率分布,常用于多分类问题。交叉熵损失函数,特别是与softmax结合时,是评估分类模型性能的关键,尤其适用于多分类任务。它衡量模型预测概率与实际标签之间的差异。在PyTorch中,`nn.CrossEntropyLoss`函数结合了LogSoftmax和负对数似然损失,用于计算损失并进行反向传播。通过`loss.backward()`,模型参数的梯度被计算出来,然后用优化器如`SGD`更新这些参数以减小损失。
|
7月前
|
机器学习/深度学习
什么是神经网络?
神经网络是一种深度学习方法,源自人类大脑生物神经网络的概念。它由大量相互连接的人工神经元(也称为节点或单元)组成,每个神经元接收输入,进行简单处理后生成输出,并将结果传递给下一层的神经元。
115 2
|
7月前
|
机器学习/深度学习 算法 数据可视化
感知机和神经网络
**神经网络**是模仿生物神经元结构的数学模型,用于处理复杂关系和模式识别。它由输入层、隐藏层(可能多层)和输出层组成,其中隐藏层负责信息处理。随着层数增加(深度学习),网络能处理更多信息。基本模型包括感知机,仅输入和输出层,用于线性划分;而**BP神经网络**有多个隐藏层,通过反向传播和梯度下降优化参数,避免局部最小值。训练过程中,神经元通过激励函数响应并调整权重,以提高预测准确性。
|
7月前
|
机器学习/深度学习 算法 PyTorch
神经网络反向传播算法
神经网络中的反向传播算法是用于训练的关键步骤,通过计算损失函数梯度更新权重。它始于前向传播,即输入数据通过网络得出预测输出,接着计算预测与实际值的误差。反向传播利用链式法则从输出层开始逐层计算误差,更新每一层的权重和偏置。例如,一个包含隐藏层的网络,初始权重随机设定,通过反向传播计算损失函数梯度,如sigmoid激活函数的网络,调整权重以减小预测误差。在Python的PyTorch框架中,可以使用`nn.Linear`定义层,`optimizer`进行参数优化,通过`backward()`计算梯度,`step()`更新参数。
|
7月前
|
机器学习/深度学习 算法 语音技术
神经网络
【6月更文挑战第14天】神经网络。
51 3
|
机器学习/深度学习 算法 自动驾驶
神经网络5
4.训练 下面简单介绍一下两层神经网络的训练。 在Rosenblat提出的感知器模型中,模型中的参数可以被训练,但是使用的方法较为简单,并没有使用目前机器学习中通用的方法,这导致其扩展性与适用性非常有限。从两层神经网络开始,神经网络的研究人员开始使用机器学习相关的技术进行神经网络的训练。例如用大量的数据(1000-10000左右),使用算法进行优化等等,从而使得模型训练可以获得性能与数据利用上的双重优势。 机器学习模型训练的目的,就是使得参数尽可能的与真实的模型逼近。具体做法是这样的。首先给所有参数赋上随机值。我们使用这些随机生成的参数值,来预测训练数据中的样本。样本的预测目标为yp,真实目标
87 0
|
机器学习/深度学习 自然语言处理 算法
简单了解神经网络
神经网络是一种强大的机器学习算法,具有很广泛的应用,可以用于图像识别、语音识别、自然语言处理、推荐系统等多个领域。
106 0
|
机器学习/深度学习 算法
连载|神经网络(下)
连载|神经网络(下)
|
机器学习/深度学习 算法
连载|神经网络(上)
连载|神经网络(上)

相关实验场景

更多