操作系统的体系结构、内核、虚拟机

简介: 操作系统的体系结构、内核、虚拟机

一、操作系统体系结构

1.1操作系统的内核

  • 内核是操作系统最基本、最核心的部分
  • 实现操作系统内核功能的那些程序就是内核程序
  • 与硬件关系较紧密的模块:
  • 时钟管理:实现计时功能
  • 中断处理:负责实现中断机制
  • 原语:
  • 是一种特殊的程序
  • 处于操作系统最底层,是最接近硬件的部分
  • 这种程序的运行具有原子性 – – 其运行只能一气呵成,不可中断
  • 运行时间较短、调用频繁
  • 对资源系统进行管理的功能:
  • 进程管理
  • 存储器管理
  • 设备管理
  • 注意:这些管理工作更多的是对数据结构的操作,不会直接涉及硬件


  • 注意:
  • 操作系统内核需要运行在内核态
  • 操作系统非内核功能运行在用户态

1.1.1大内核(又名:宏内核/单内核)

  • 将操作系统的主要功能模块都作为系统内核,运行在核心态
  • 优点:高性能
  • 缺点:
  • 1.内核代码庞大,结构混乱,难以维护
  • 2.大内核中某个功能模块出错,就可能导致整个系统崩溃
  • 典型的大内核/宏内核/单内核 操作系统:Linux、UNIX
  • 特征、思想:
  • 所有系统功能都放在内核里(大内核结构的OS通常也采用了“模块化”的设计思想)


1.1.2微内核

  • 只把最基本的功能保留在内核
  • 优点:
  • 1.内核功能少,结构清晰,方便维护,内核可靠性高
  • 2.内核外的某个功能模块出错不会导致整个系统崩溃
  • 缺点:
  • 1.需要频繁地在核心态和用户态之间切换,性能低
  • 2.用户态下的各功能模块不可以直接相互调用,只能通过内核的“消息传递”来间接通信
  • 典型的微内核操作系统:Windows NT


1.3分层结构

  • 特征、思想:内核分多层,每层可单向调用更低一层提供的接口
  • 优点:
  • 1.便于调试和验证、自底向上逐层调试验证
  • 2.易扩充和易维护,各层之间调用接口清晰固定
  • 缺点:
  • 1.仅可调用相邻低层,难以合理定义各层的边界
  • 2.效率低,不可跨层调用,系统调用执行时间长


1.4模块化

模块化是将操作系统按功能划分为若干个具有一定独立性的模块,每个模块具有某方面的管理功能,并规定好各模块间的接口,使各模块之间能通过接口进行通信,还可以进一步将各模块细分为若干个具有一定功能的子模块,同样也规定好各子模块之间的接口,把这种设计方法称为模块–接口法。

  • 特征、思想:将内核分为多个模块,各模块之间相互协作
  • 内核=主模块+可加载内核模块
  • 主模块:只负责核心功能,如进程调度、内存管理
  • 可加载内核模块:可以动态加载新模块到内核,而无需重新编译整个内核
  • 优点:
  • 1.模块间逻辑清晰易于维护,确定模块间接口后即可多模块同时开发
  • 2.支持动态加载新的内核模块(如:安装设备驱动程序、安装新的文件系统模块到内核),增强OS适应性
  • 3.任何模块都可以直接调用其他模块,无需采用详细传递进行通信,效率高
  • 缺点:
  • 1.模块间的接口定义未必合理
  • 2.模块间相互依赖,更难调试和验证

1.5外核(exokernel)

  • 特征、思想:内核负责进程调度、进程通信等功能,外核负责为用户进程分配未经抽象的硬件资源,且由外核负责保证资源使用安全
  • 优点:
  • 1.外核可直接给用户进程分配“不虚拟、不抽象”的硬件资源,使用户进程可以更灵活的使用硬件资源
  • 2.减少了虚拟硬件资源的“映射层”,提升效率
  • 缺点:
  • 1.降低了系统的一致性
  • 2.是系统变得更复杂

**

二、操作系统引导

2.1什么是操作系统引导?

操作系统引导:开机的时候,怎么让操作系统运行起来

安装操作系统后:

  • 磁盘包括:
  • 主引导记录(MBR)(包含:磁盘引导程序和分区表)
  • C:盘
  • D:盘
  • E:盘等
  • C:盘中又包含:
  • 引导记录PBR(负责找到“启动管理器”)
  • 根目录
  • 其他
  • 主存:
  • 由ROM(BIOS)包含:ROM引导程序,即自举程序和RAM组成

2.2操作系统引导过程



  • 1.CPU从一个特定的主存地址开始,取指令,执行ROM中的引导程序(先进行硬件自检,再开机)
  • 2.将磁盘的第一块 – – 主引导记录读入内存,执行磁盘引导程序,扫描分区表
  • 3.从活动区(又称主分区,即安装了操作系统的分区)读入分区引导记录,执行其中的程序
  • 4.从根目录下找到完整的操作系统初始化程序(启动管理器)并执行,完成“开机”的一系列动作

三、虚拟机

  • 虚拟机:使用虚拟化技术,将一台物理机器虚拟化为多台虚拟机器(Virtual Machien ,VM),每个虚拟机器都可以独立运行一个操作系统
  • 同义术语:虚拟机管理程序/虚拟机监控程序/Virtual Machien Monitor(VMM)/Hypervisor



  • 两类虚拟机管理程序(VMM)的对比
第一类VMM 第二类VMM
对物理资源的控制权 直接运行在硬件之上,能直接控制和分配物理资源 运行在Host OS之上,依赖于Host OS为其分配的物理资源
资源分配方式 在安装Guest OS时,VMM要在原本的硬盘上自行分配存储空间,类似于“外核”的分配方式,分配未经抽象的物理硬件 Guest OS拥有自己的细腻==虚拟硬盘,该硬盘实际上是Guest OS文件系统中的一个大文件,Guest OS分配到的内存是虚拟内存
性能 性能更好 性能更差,需要Guest OS作为“中介”
可支持的虚拟机数量 更多,不需要和Guest OS竞争资源,相同的硬件资源可以支持更多的虚拟机 更少,Guest OS本身需要使用物理资源,Guest OS上运行的其他进程也需要物理资源
虚拟机的可迁移性 更差 更好,只需导出虚拟机镜像文件即可迁移到另一台Guest OS上,商业化应用更广泛
运行模式 第一类VMM运行在最高特权级(Ring O),可以执行最该特权的指令 第二类VMM部分运行在用户态、部分运行在内核态,Guest OS发出的系统调用会被VMM截获,并转化为VMM对Guest OS的系统调用


相关文章
|
5月前
|
存储 调度
探索操作系统的心脏:内核与用户空间的交互
在数字世界的每一次呼吸中,操作系统扮演着至关重要的角色。本文将深入探讨操作系统的核心组件——内核与用户空间之间的神秘舞蹈。通过直观的比喻和生动的代码片段,我们将一窥这场幕后的交响曲,了解它们是如何协同工作以支持我们的计算需求的。从简单的文件读写到复杂的网络通信,每一个操作背后都隐藏着内核与用户空间之间精妙的互动。准备好跟随我们的脚步,一起揭开操作系统的神秘面纱。
64 3
|
2月前
|
Web App开发 安全 Linux
【独家揭秘2025】VMware Workstation Pro虚拟机:免费安装教程大放送,一键解锁操作系统模拟神器!
VMware Workstation Pro 是由威睿(VMware)公司开发的一款功能强大的桌面虚拟化软件,允许用户在同一台物理计算机上同时运行多个操作系统,如Windows、..
120 2
【独家揭秘2025】VMware Workstation Pro虚拟机:免费安装教程大放送,一键解锁操作系统模拟神器!
|
5月前
|
缓存 并行计算 Linux
深入解析Linux操作系统的内核优化策略
本文旨在探讨Linux操作系统内核的优化策略,包括内核参数调整、内存管理、CPU调度以及文件系统性能提升等方面。通过对这些关键领域的分析,我们可以理解如何有效地提高Linux系统的性能和稳定性,从而为用户提供更加流畅和高效的计算体验。
190 24
|
4月前
|
安全 Linux 开发者
探索操作系统的心脏:内核与用户空间的交互
在数字世界的每一次点击和命令背后,隐藏着一个复杂而精妙的操作系统世界。本文将带你走进这个世界的核心,揭示内核与用户空间的神秘交互。通过深入浅出的解释和直观的代码示例,我们将一起理解操作系统如何协调硬件资源,管理进程和内存,以及提供文件系统服务。无论你是编程新手还是资深开发者,这篇文章都将为你打开一扇通往操作系统深层原理的大门。让我们一起开始这段旅程,探索那些支撑我们日常数字生活的技术基石吧!
92 6
|
4月前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
4月前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
5月前
|
存储 Linux 开发者
探索操作系统的内核——从理论到实践
操作系统是计算机科学的核心,它像一位默默无闻的指挥官,协调着硬件和软件之间的复杂关系。本文将深入操作系统的心脏——内核,通过直观的解释和丰富的代码示例,揭示其神秘面纱。我们将一起学习进程管理、内存分配、文件系统等关键概念,并通过实际代码,体验内核编程的魅力。无论你是初学者还是有经验的开发者,这篇文章都将带给你新的视角和知识。
|
4月前
|
消息中间件 安全 Linux
深入探索Linux操作系统的内核机制
本文旨在为读者提供一个关于Linux操作系统内核机制的全面解析。通过探讨Linux内核的设计哲学、核心组件、以及其如何高效地管理硬件资源和系统操作,本文揭示了Linux之所以成为众多开发者和组织首选操作系统的原因。不同于常规摘要,此处我们不涉及具体代码或技术细节,而是从宏观的角度审视Linux内核的架构和功能,为对Linux感兴趣的读者提供一个高层次的理解框架。
|
4月前
|
机器学习/深度学习 人工智能 物联网
操作系统的心脏——深入理解内核机制
在本文中,我们揭开操作系统内核的神秘面纱,探索其作为计算机系统核心的重要性。通过详细分析内核的基本功能、类型以及它如何管理硬件资源和软件进程,我们将了解内核是如何成为现代计算不可或缺的基础。此外,我们还会探讨内核设计的挑战和未来趋势,为读者提供一个全面的内核知识框架。
|
5月前
|
存储 调度 开发者
探索操作系统的心脏:内核与用户空间的交互之旅
在数字世界的无限广阔中,操作系统扮演着枢纽的角色,连接硬件与软件,支撑起整个计算生态。本篇文章将带领读者深入操作系统的核心——内核,揭示其与用户空间的神秘交互。我们将透过生动的例子和易于理解的比喻,深入浅出地探讨这一复杂主题,旨在为非专业读者揭开操作系统的神秘面纱,同时为有一定基础的读者提供更深层次的认识。从进程管理到内存分配,从文件系统到设备驱动,每一个环节都是精确而优雅的舞蹈,它们共同编织出稳定而高效的计算体验。让我们开始这场奇妙之旅,一探操作系统背后的科学与艺术。
59 5

热门文章

最新文章

下一篇
oss创建bucket