YOLO(You Only Look Once)系列算法中的特征融合主要是指在 YOLOv3 及其后续版本中采用的特征金字塔网络(Feature Pyramid Network, FPN)和多尺度预测。特征融合的原理是通过结合不同尺度的特征图来提高模型对不同大小目标的检测能力。以下是特征融合原理的详细解释:
1. 基础网络特征:YOLOv3 使用 Darknet-53 作为其基础骨干网络,该网络通过多个卷积层逐步提取图像的特征。
2. 特征图的多尺度:在 Darknet-53 的不同深度,网络会生成不同尺度的特征图。较浅层的特征图分辨率较高,包含更多空间细节信息;较深层的特征图分辨率较低,但包含更丰富的语义信息。
3. 自底向上的路径(Bottom-up Path):这是传统的卷积网络结构,通过连续的卷积和池化层逐步降低特征图的空间分辨率,同时增加通道数以提取更高层次的特征。
4. 自顶向下的路径(Top-down Path):FPN 引入了自顶向下的路径,通过1x1卷积和上采样(Upsampling)逐步恢复特征图的空间分辨率。
5. 特征融合:在 FPN 中,自顶向下的路径会与自底向上路径的特征图进行融合。具体来说,来自较深层的高语义特征会与来自较浅层的高分辨率特征进行结合,生成融合后的特征图。
6. 融合操作:通常使用1x1卷积层来调整通道数,并通过元素相加的方式将不同尺度的特征图融合在一起。
7. 多尺度预测:融合后的特征图在多个尺度上进行目标预测,每个尺度关注不同大小的目标。这样,YOLO 模型能够同时检测到不同尺寸的目标。
8. 锚框预测:在每个融合后的特征图上,YOLOv3 会为每个网格单元预测多个边界框,每个边界框包含边界框坐标、宽度和高度,以及该框内可能存在的类别概率。
通过特征融合,YOLOv3 能够有效地利用图像的多尺度信息,提高了对不同尺寸目标的检测性能。这种融合策略特别适用于目标检测任务,因为现实世界中的目标大小差异很大,单一尺度的特征图很难同时捕捉到所有尺寸的目标。