数据结构与算法⑭(第四章_下)二叉树的模拟实现和遍历代码(上)

简介: 数据结构与算法⑭(第四章_下)二叉树的模拟实现和遍历代码

需要先创建一颗二叉树,然后才能学习其相关的基本操作,考虑到我们刚刚接触二叉树,

为了能够先易后难地进行讲解,这里将手动创建一颗简单的二叉树,用来方便大家学习。

等二叉树结构了解的差不多后,后期会研究二叉树的真正的创建方式。

(后面的层序遍历跟着的那篇OJ就是用前序遍历构建二叉树)

1.二叉树概念

二叉树是什么?① 空树 ② 非空:根节点、根节点的左子树与根节点的又子树组成的。

85ca08b0ce884b469769bc1248863c22.png


从概念中我们不难看出,二叉树的定义是递归式的。因此后续基本操作中,基本都是按照该概念来实现的,来看 A 的左子树,把 B 看作为根节点,又是颗二叉树。所以可以通过采用递归的手法来实现二叉树。

2.二叉树定义

 
#define _CRT_SECURE_NO_WARNINGS 1
 
#include<stdio.h>
 
typedef char BTDataType;
 
typedef struct BinaryTreeNode 
{
    struct BinaryTreeNode* left;       // 记录左节点
    struct BinaryTreeNode* right;      // 记录右节点
    BTDataType data;                   // 存储数据
} BTNode;
 
//创建新节点
BTNode* CreateNode(BTDataType x) 
{
    BTNode* new_node = (BTNode*)malloc(sizeof(BTNode));
    if (new_node == NULL)
    {
        printf("malloc failed!\n");
        exit(-1);
    }
    new_node->data = x;
    new_node->left = new_node->right = NULL;
 
    return new_node;
}
 
//手动创建二叉树 
BTNode* CreateBinaryTree() 
{
    BTNode* nodeA = CreateNode('A');
    BTNode* nodeB = CreateNode('B');
    BTNode* nodeC = CreateNode('C');
    BTNode* nodeD = CreateNode('D');
    BTNode* nodeE = CreateNode('E');
    BTNode* nodeF = CreateNode('F');
 
    nodeA->left = nodeB;         //           A
    nodeA->right = nodeC;        //       B        C
    nodeB->left = nodeD;         //    D        E    F
    nodeC->left = nodeE;       
    nodeC->right = nodeF;        
 
    return nodeA;
}
 
int main()
{
    BTNode* root = CreateBinaryTree();
}

3.二叉树深度优先遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历,就是按照某种特定的规则,一次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。 访问节点所做的操作要看具体的应用问题。遍历是二叉树上最重要的运算之一,也是二叉树上进行其他运算的基础。

二叉树遍历(Traversal):沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。 按照规则,二叉树的遍历有:前序 / 中序 / 后序 的递归或非递归遍历。除了前序、中序和后续遍历外,我们还可以对二叉树进行层序遍历

比如二叉树的中序遍历:

3.1二叉树前序遍历

前序遍历(Preorder Traversal):访问根节点的操作发生在遍历其右子树之前。即:首先访问根结点,然后遍历左子树,最后遍历右子树(根左右)。

代码实现前序遍历:

 
//二叉树前序遍历
void PreOrder(BTNode* root)
{
    //首先判断根是否为空,为空就返回
    if (root == NULL)
    {
        printf("NULL ");    // 暂时打印出来,便于观察       
        return;
    }
    //走到这里说明不为空,根据前序遍历,先访问根节点
    printf("%c ", root->data);
 
    //然后遍历左子树(利用递归)
    PreOrder(root->left);
 
    //最后遍历右子树(利用递归)
    PreOrder(root->right);
 
    //           A
    //       B        C
    //    D        E    F        前序:根 左 右
    //执行输出:  A B D NULL NULL NULL C E NULL NULL F NULL NULL
}

① 首先判断根是否为空,如果根为空,则返回。这里为了表示,我们把空节点以 " Ø " 打印出来。


② 如果跟不为空,这说明有数据。由于是前序遍历(Preorder),前序遍历是先访问根节点,然后遍历左子树,最后再遍历右子树。所以,我们这里先要访问的是根节点,我们把根节点的数据打印出来。


③ 然后我们需要遍历左子树,这时我们利用递归就可以实现。将根节点 root 的左数 left 传入 PreOrder 函数(将其左树看作根),一直递归下去,直到碰到 root == NULL 则返回。

④ 最后,遍历完左子树后遍历右子树。利用递归,方法同上。


3.2二叉树中序遍历

递归的中序和后序和前序差不多 顺序换一下就行

 
//二叉树中序遍历
void InOrder(BTNode* root) 
{
    if (root == NULL) 
    {
        printf("NULL ");  
        return;
    }
 
    InOrder(root->left);
 
    printf("%c ", root->data);
 
    InOrder(root->right);
    //           A
    //       B        C
    //    D        E    F         中序:左  根  右
    //执行输出:NULL D NULL B NULL A NULL E NULL C NULL F NULL
}

3.3二叉树后序遍历

 
void PostOrder(BTNode* root) 
{
    if (root == NULL) 
    {
        printf("NULL ");
        return;
    }
 
    PostOrder(root->left);
 
    PostOrder(root->right);
 
    printf("%c ", root->data);
    //           A
    //       B        C
    //    D        E    F        后序:左  右  根
    //执行输出:NULL NULL D NULL B NULL NULL E NULL NULL F C A
}

4.二叉树的几个接口函数

下面我们实现几个接口函数

 
// 二叉树结点个数
int BinaryTreeSize(BTNode* root);
// 二叉树叶子结点个数
int BinaryTreeLeafSize(BTNode* root);
// 二叉树第k层结点个数
int BinaryTreeLevelKSize(BTNode* root, int k);
// 二叉树查找值为x的结点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x);
// 二叉树销毁
void BinaryTreeDestory(BTNode** root);

4.1 求二叉树结点个数

和上面遍历一样,采用分治的思想:是空就返回0,不是空就返回左子树的结点和右子树的结点+1(本身)。

 
int TreeSize(BTNode* root) 
{
    return root == NULL ? 0 
              : TreeSize(root->left) + TreeSize(root->right) + 1;
}

f66bcdf94f4b48b884b110105fbf1e78.png

4.2 求二叉树叶子结点个数

同理,是空返回1,是叶子返回0,不是空也不是叶子的话就求其左子树的叶子+右子树的叶子

 
int TreeLeafSize(BTNode* root) 
{
    if (root == NULL) 
    {
        return 0;
    }
 
    if (root->left == NULL && root->right == NULL) 
    {
        return 1;
    }
 
    return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}

0425a2f1bb774c91b8a3fb3e0157135e.png


数据结构与算法⑭(第四章_下)二叉树的模拟实现和遍历代码(下):https://developer.aliyun.com/article/1513455

目录
相关文章
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】TF-IDF算法在人工智能方面的应用,附带代码
TF-IDF算法在人工智能领域,特别是自然语言处理(NLP)和信息检索中,被广泛用于特征提取和文本表示。以下是一个使用Python的scikit-learn库实现TF-IDF算法的简单示例,并展示如何将其应用于文本数据。
115 65
|
2天前
|
机器学习/深度学习 人工智能 算法
【人工智能】传统语音识别算法概述,应用场景,项目实践及案例分析,附带代码示例
传统语音识别算法是将语音信号转化为文本形式的技术,它主要基于模式识别理论和数学统计学方法。以下是传统语音识别算法的基本概述
8 2
|
6天前
|
搜索推荐 算法 Java
|
11天前
【数据结构】遍历二叉树(递归思想)-->赋源码
【数据结构】遍历二叉树(递归思想)-->赋源码
37 4
|
13天前
|
机器学习/深度学习 运维 算法
深入探索机器学习中的支持向量机(SVM)算法:原理、应用与Python代码示例全面解析
【8月更文挑战第6天】在机器学习领域,支持向量机(SVM)犹如璀璨明珠。它是一种强大的监督学习算法,在分类、回归及异常检测中表现出色。SVM通过在高维空间寻找最大间隔超平面来分隔不同类别的数据,提升模型泛化能力。为处理非线性问题,引入了核函数将数据映射到高维空间。SVM在文本分类、图像识别等多个领域有广泛应用,展现出高度灵活性和适应性。
67 2
|
5天前
|
搜索推荐 算法 Java
插入排序算法(Java代码实现)
这篇文章通过Java代码示例详细解释了插入排序算法的实现过程,包括算法的基本思想、核心代码、辅助函数以及测试结果,展示了如何通过插入排序对数组进行升序排列。
|
8天前
|
机器学习/深度学习 算法 Python
python与朴素贝叶斯算法(附示例和代码)
朴素贝叶斯算法以其高效性和优良的分类性能,成为文本处理领域一项受欢迎的方法。提供的代码示例证明了其在Python语言中的易用性和实用性。尽管算法假设了特征之间的独立性,但在实际应用中,它仍然能够提供强大的分类能力。通过调整参数和优化模型,你可以进一步提升朴素贝叶斯分类器的性能。
18 0
|
11天前
|
存储 算法 Java
LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解
LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解
29 0
|
11天前
|
算法 Java
LeetCode初级算法题:子数组最大平均数+二叉树的最小深度+最长连续递增序列+柠檬水找零
LeetCode初级算法题:子数组最大平均数+二叉树的最小深度+最长连续递增序列+柠檬水找零
22 0
|
15天前
|
算法 C++
惊爆!KPM算法背后的秘密武器:一行代码揭秘字符串最小周期的终极奥义,让你秒变编程界周期大师!
【8月更文挑战第4天】字符串最小周期问题旨在找出字符串中最短重复子串的长度。KPM(实为KMP,Knuth-Morris-Pratt)算法,虽主要用于字符串匹配,但其生成的前缀函数(next数组)也可用于求解最小周期。核心思想是构建LPS数组,记录模式串中每个位置的最长相等前后缀长度。对于长度为n的字符串S,其最小周期T可通过公式ans = n - LPS[n-1]求得。通过分析周期字符串的特性,可证明该方法的有效性。提供的C++示例代码展示了如何计算给定字符串的最小周期,体现了KPM算法在解决此类问题上的高效性。
26 0