惊爆!KPM算法背后的秘密武器:一行代码揭秘字符串最小周期的终极奥义,让你秒变编程界周期大师!

简介: 【8月更文挑战第4天】字符串最小周期问题旨在找出字符串中最短重复子串的长度。KPM(实为KMP,Knuth-Morris-Pratt)算法,虽主要用于字符串匹配,但其生成的前缀函数(next数组)也可用于求解最小周期。核心思想是构建LPS数组,记录模式串中每个位置的最长相等前后缀长度。对于长度为n的字符串S,其最小周期T可通过公式ans = n - LPS[n-1]求得。通过分析周期字符串的特性,可证明该方法的有效性。提供的C++示例代码展示了如何计算给定字符串的最小周期,体现了KPM算法在解决此类问题上的高效性。

字符串的最小周期问题是计算机科学中一个有趣且实用的课题,它涉及如何快速确定一个字符串中重复出现的最短子串的长度。KPM(通常指KMP,即Knuth-Morris-Pratt算法)算法虽然主要用于字符串匹配,但通过其生成的部分匹配表(也称为前缀函数或next数组),我们可以巧妙地求解字符串的最小周期。本文将详细阐述如何利用KPM算法的原理来求解字符串的最小周期,并辅以示例代码加以说明。

原理概述
KPM算法的核心在于构建一个前缀函数LPS(Longest Prefix Suffix的缩写,但在实际应用中常称为next数组),该数组记录了模式串中每个位置之前的最长相等前后缀的长度。对于求解字符串的最小周期问题,我们可以利用LPS数组的性质:若字符串S的长度为n,其最小周期T满足ans = n - LPS[n-1],其中ans是最小周期的长度,LPS[n-1]是字符串S最后一个字符位置的前缀函数值。

证明过程
为了证明上述公式的正确性,我们可以从两个方面进行考虑:

完整周期字符串:假设字符串由k个完整的周期拼接而成,即S = [1][2][3]...[k],每个周期长度为T。此时,LPS[n-1]将等于(k-1)T,因为最后一个周期之前的所有内容都是其前缀。因此,ans = n - LPS[n-1] = kT - (k-1)*T = T,显然成立。
非完整周期字符串:对于包含不完整周期的情况,假设字符串为[e][1][2][3][b],其中[e]和[b]分别表示可能存在的非周期部分。通过分情况讨论(如[e]和[b]的长度为0、不为0等),我们可以证明无论哪种情况,ans = n - LPS[n-1]始终等于周期T。
示例代码
以下是使用C++编写的示例代码,用于计算给定字符串的最小周期:

cpp

include

include

include

using namespace std;

void Prefixion(vector& LPS, const string& s) {
int n = s.size();
LPS.resize(n, 0);
int len = 0;
int i = 1;
while (i < n) {
if (s[i] == s[len]) {
len++;
LPS[i] = len;
i++;
} else {
if (len != 0) {
len = LPS[len - 1];
} else {
LPS[i] = 0;
i++;
}
}
}
}

int main() {
string s;
cin >> s;
vector LPS;
Prefixion(LPS, s);
cout << s.size() - LPS[s.size() - 1] << endl; // 输出最小周期
return 0;
}
结论
通过上述证明和示例代码,我们可以看到,利用KPM算法中的前缀函数(next数组)可以高效地求解字符串的最小周期问题。这种方法不仅避免了不必要的字符串比较,还通过预处理的方式提高了算法的效率,是处理字符串周期性问题的一种有效手段。

相关文章
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
209 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
144 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
154 8
|
3月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
209 2
|
3月前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
124 1
|
2月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
130 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
121 0
|
3月前
|
机器学习/深度学习 存储 算法
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
151 0
|
3月前
|
机器学习/深度学习 分布式计算 算法
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
180 0
|
3月前
|
存储 边缘计算 算法
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)

热门文章

最新文章