数据结构:树和二叉树定义和术语

简介: 1、树的对象 具有相同特性的数据元素的集合 2、关系 如果没有对象叫做空树 否则: 在存在唯一的成为根的数据元素root 当元素个数大于1的时候,其他节点可以 分为互不相交的树,成为根root的子树         a  b      c    d ...
1、树的对象
具有相同特性的数据元素的集合
2、关系
如果没有对象叫做空树
否则:
在存在唯一的成为根的数据元素root
当元素个数大于1的时候,其他节点可以
分为互不相交的树,成为根root的子树
        a
 b      c    d
e f     g     
       i   j   
    
b c d 叫做a为root节点的子树
e f 叫做以b为root节点的子树
以此类推 
3、相关术语
结点:数据元素+若干指向子树的分支
      如上数据元素a+指向子树b c d的指针叫做结点
结点的度:分支的个数 比如a的度就为3
树的度:所有结点的度的最大值
叶子结点:度为0的结点
分支结点:度大约0的结点,也就是叶子结点以外的
          特殊的就是root根结点
从根到结点的路径:从根到结点所经历的分支和结点构成


孩子结点:子树的根对于树的根叫做孩子结点
双亲结点:树的根对于子树的根叫做双亲结点
兄弟结点:有相同根的子树叫做兄弟结点
祖先节点:从根到结点之间的全部节点叫做祖先节点
子孙节点:一个根下的所有的节点叫做子孙节点


结点的层次:角色根结点的层次为1,第L层的节点的子树
            根结点的层次是L+1层 
树的深度:树中叶子节点所在的最大层次
如上例子:第3层的i的层次为3+1=4层,整个树的深度为4


森林:是多棵互不相交的树的集合,从定义可以看出,如果一棵树去掉root根结点明显他
      就是一个森林,如果一个森林加上一个root结点那么就是一棵树




有向树:
1、有确定的根
2、树根和子树根之间为有向关系


一般讨论无序树,同一个层次之间无序




和线性表的区别:
第一个元素无前驱 根结点无前驱
最后一个数据元素 多个叶子结点
无后继           无后继
其他数据元素     树中其他节点
一个前驱,       一个前驱、多个后继
一个后继


由于树的不确定性和复杂性我们一般讨论二叉树
二叉树
定义:
二叉树或为空树;或者由一个根结点加上
两棵分别称为左子树和右子树的、互不相交的二叉树组成
并且一个根结点有且只有两个子树为左子树和右子树


       A
  B            E
C            F
  D            G
             H   K
左子树     右子树


二叉树2种形态
1、空树
2、只有根结点的树
3、左子树非空右子树空
4、左子树空右子树非空
5、都不为空


对于3和4不同二叉树必须明确是左子树为空还是右子树为空,虽然
只有一个子树但是必须明确是左子树还是右子树


重要特性:
1、在二叉树的第i层上最多有2^(i-1)个结点(i>=1)
2、深度为h的树结点树最多为2^h-1  
3、对于任何一棵二叉树,如果他含有n0个叶子节点,
   n2个度为2的节点,这必然存在关系n0=n2+1
注:二叉树有3种节点:n0代表度为0的节点
    n1代表度为1的节点
                     n2代表度为2的节点
                     n0+n1+n2=n 总的结点
                     b为分支数量
                     n=b+1=1+n1+2n2
                     及:1+n1+2n2=n0+n1+n2
                     及:n0=n2+1
满二叉树:深度为k的树含有2^k-1个结点,其实就是在一棵树中
          不包含度为1的节点的树,只有深度为k的层末尾节点
          才为叶子结点
完全二叉树:如果给满二叉树编号,按照编号一一对应的一棵树
            及知道结点个数就知道树的结构,且如果无左孩子
            结点那么它就是叶子结点
如:
        1
   2        3
 4   5    6   7 
为满二叉树
        1
   2        3
 4   5    6   
为完全二叉树
        1
   2        3
     4    5
不为完全二叉树


关于完全二叉树的特性:
1、具有n个结点的完全二叉树的深度为 [log2 n]+1 
   符号[]为不大于log2 n的最大整数
2、如果i=1,则结点i是二叉树的根,无双亲,如果i>1,
   这其双亲parent(i)结点为[i/2]
3、如果2i>n则结点i无左孩子,否则左孩子是节点2i
4、如果2i+1>n则结点无右孩子,否则其右孩子是节点2i+1


相关文章
|
18天前
|
存储 算法 C语言
"揭秘C语言中的王者之树——红黑树:一场数据结构与算法的华丽舞蹈,让你的程序效率飙升,直击性能巅峰!"
【8月更文挑战第20天】红黑树是自平衡二叉查找树,通过旋转和重着色保持平衡,确保高效执行插入、删除和查找操作,时间复杂度为O(log n)。本文介绍红黑树的基本属性、存储结构及其C语言实现。红黑树遵循五项基本规则以保持平衡状态。在C语言中,节点包含数据、颜色、父节点和子节点指针。文章提供了一个示例代码框架,用于创建节点、插入节点并执行必要的修复操作以维护红黑树的特性。
42 1
|
1天前
|
存储 机器学习/深度学习
【数据结构】二叉树全攻略,从实现到应用详解
本文介绍了树形结构及其重要类型——二叉树。树由若干节点组成,具有层次关系。二叉树每个节点最多有两个子树,分为左子树和右子树。文中详细描述了二叉树的不同类型,如完全二叉树、满二叉树、平衡二叉树及搜索二叉树,并阐述了二叉树的基本性质与存储方式。此外,还介绍了二叉树的实现方法,包括节点定义、遍历方式(前序、中序、后序、层序遍历),并提供了多个示例代码,帮助理解二叉树的基本操作。
29 13
【数据结构】二叉树全攻略,从实现到应用详解
|
19天前
|
存储
【初阶数据结构篇】二叉树基础概念
有⼀个特殊的结点,称为根结点,根结点没有前驱结点。
|
24天前
|
存储 算法 Linux
【数据结构】树、二叉树与堆(长期维护)(1)
【数据结构】树、二叉树与堆(长期维护)(1)
|
24天前
|
算法
【数据结构】树、二叉树与堆(长期维护)(2)
【数据结构】树、二叉树与堆(长期维护)(2)
【数据结构】树、二叉树与堆(长期维护)(2)
|
19天前
|
算法
【初阶数据结构篇】二叉树算法题
二叉树是否对称,即左右子树是否对称.
|
19天前
|
存储
【初阶数据结构篇】实现链式结构二叉树(二叉链)下篇
要改变root指针的指向,将本来指向根节点的root指针改为空,所以传二级指针(一级指针也可以,只不过在调用完记得把root置为空)。
|
19天前
|
存储 测试技术
【初阶数据结构篇】实现链式结构二叉树(二叉链)上篇
先构建根结点,再对左右子树构建,每次需要时申请一个结点空间即可,否则返回空指针。
|
19天前
|
存储 算法 测试技术
【初阶数据结构篇】实现顺序结构二叉树(堆的实现方法)
注意传过去的参数是插入的位置,即插入前的size,在调整完后再将size++
|
22天前
栈的几个经典应用,真的绝了
文章总结了栈的几个经典应用场景,包括使用两个栈来实现队列的功能以及利用栈进行对称匹配,并通过LeetCode上的题目示例展示了栈在实际问题中的应用。
栈的几个经典应用,真的绝了