2024年Python最全使用Python求解方程_python解方程,2024年最新面试高分实战

简介: 2024年Python最全使用Python求解方程_python解方程,2024年最新面试高分实战

已剪辑自: https://zhuanlan.zhihu.com/p/24893371

新年第一篇,搞起.

这回写一个好久之前想做,一直搁着没做的东西—— Python 解方程(其实是放假回家,趁着家里电脑重装 LOL 的时间过来写一篇). 咱这回用三种不同的方法,来应对平常碰到的简单方程.

Numpy 求解线性方程组

例如我们要解一个这样的二元一次方程组:

x + 2y = 3
4x + 5y = 6

当然我们可以手动写出解析解,然后写一个函数来求解,这实际上只是用 Python 来单纯做“数值计算”. 但实际上,numpy.linalg.solve 可以直接求解线性方程组.

一般地,我们设解线性方程组形如 Ax=b,其中 A 是系数矩阵,b 是一维(n 维也可以,这个下面会提到),x 是未知变量. 再拿上面地最简单的二元一次方程组为例,我们用 numpy.linalg.solve 可以这样写:

In [1]: import numpy as np
   ...: A = np.mat('1,2; 4,5')    # 构造系数矩阵 A
   ...: b = np.mat('3,6').T       # 构造转置矩阵 b (这里必须为列向量)
   ...: r = np.linalg.solve(A,b)  # 调用 solve 函数求解
   ...: print r
   ...:
Out[1]: [[-1.]
         [ 2.]]

那么前面提到的“ n 维”情形是什么呢?实际上就是同时求解多组形式相同的二元一次方程组,例如我们想同时求解这样两组:

x + 2y = 3
4x + 5y = 6

x + 2y = 7
4x + 5y = 8

就可以这样写:

In [2]: import numpy as np
   ...: A = np.mat('1,2; 4,5')          # 构造系数矩阵 A
   ...: b = np.array([[3,6], [7,8]]).T  # 构造转置矩阵 b (这里必须为列向量),
   ...: 注意这里用的是 array
   ...: r = np.linalg.solve(A,b)        # 调用 solve 函数求解
   ...: print r
   ...:
Out[2]: [[-1.         -6.33333333]
         [ 2.          6.66666667]]

SciPy 求解非线性方程组

先看官方文档的介绍:

scipy.optimize.fsolve(func, x0, args=(), fprime=None, full_output=0, col_deriv=0, xtol=1.49012e-08, maxfev=0, band=None, epsfcn=None, factor=100, diag=None)[source]

一般来说,我们只需要用到 func 和 x0 就够了. func 是自己构造的函数,也就是需要求解的方程组的左端(右端为 0),而 x0 则是给定的初值.

我们来看一个具体的例子,求解:

x + 2y + 3z - 6 = 0
5 \* (x \*\* 2) + 6 \* (y \*\* 2) + 7 \* (z \*\* 2) - 18 = 0
9 \* (x \*\* 3) + 10 \* (y \*\* 3) + 11 \* (z \*\* 3) - 30 = 0

就可以这么写:

In [3]: from scipy.optimize import fsolve
   ...:
   ...: def func(i):
   ...:     x, y, z = i[0], i[1], i[2]
   ...:     return [
   ...:             x + 2 \* y + 3 \* z - 6,
   ...:             5 \* (x \*\* 2) + 6 \* (y \*\* 2) + 7 \* (z \*\* 2) - 18,
   ...:             9 \* (x \*\* 3) + 10 \* (y \*\* 3) + 11 \* (z \*\* 3) - 30
   ...:            ]
   ...:
   ...: r = fsolve(func,[0, 0, 0])
   ...: print r
   ...:
Out[3]: [ 1.00000001  0.99999998  1.00000001]

当然,SciPy 也可以用来求解线性方程组,这是因为 scipy.optimize.fsolve 本质上是最小二乘法来逼近真实结果.

SymPy 通吃一切

例如求解一个:

x + 2 * (x ** 2) + 3 * (x ** 3) - 6 = 0

直接就是:

In [4]: from sympy import \*
   ...: x = symbols('x')
   ...: solve(x + 2 \* (x \*\* 2) + 3 \* (x \*\* 3) - 6, x)
Out[4]: [1, -5/6 - sqrt(47)\*I/6, -5/6 + sqrt(47)\*I/6]

另外,

@Wayne Shi

的这篇 使用 Python 解数学方程 ,就重点讲述了 SymPy 解线性方程组的方法,所以我也就不再赘述了。

其实 SymPy 能干的太多了,有兴趣的可以看一看 GitHub上的 Quick examples.



SymPy简介

SymPy的官方教程:

https://github.com/sympy/sympy/wiki/Quick-examples

https://docs.sympy.org/latest/tutorial/index.html

已剪辑自: https://blog.csdn.net/starter_____/article/details/81989835

SymPy是符号数学的Python库。它的目标是成为一个全功能的计算机代数系统,同时保持代码简洁、易于理解和扩展。

In [1]:from sympy import *
In [2]:x = Symbol('x')
In [3]:y = Symbol('y')123
展开与折叠

expand( )展开方程

In [8]: ((x+y)**2).expand()
Out[8]: x**2 + 2*x*y + y**212

facrot( )折叠方程

In [13]: factor(x**2 + 2*x*y + y**2)
Out[13]: (x + y)**212
分离与合并

apart( )分离整式

In [14]: together(1 + 2/(x - 1))
Out[14]: (x + 1)/(x - 1)12

together( )合并整式

In [10]: together(1/x+1/y+1/z)
Out[10]: (x*y + x*z + y*z)/(x*y*z)12
简化表达式

simplify( )普通的化简

In [15]: simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
Out[15]: x - 112

trigsimp( )三角化简

In [18]: trigsimp(sin(x)/cos(x))
Out[18]: tan(x)12

powsimp( )指数化简

In [21]: powsimp(x**a*x**b)
Out[21]: x**(a + b)12
solve( )解方程

第一个参数为要解的方程,要求右端等于0,第二个参数为要解的未知数

一元一次方程

In [7]:solve(x * 3 - 6, x)
[2]12

二元一次方程

In [8]: solve([2 * x - y - 3, 3 * x + y - 7],[x, y])
Out[8]: {x: 2, y: 1}12
limit( )求极限

dir=’+’表示求解右极限,dir=’-‘表示求解左极限

In [10]: limit(1/x,x,oo,dir='+')
Out[10]: 0
In [11]: limit(1/x,x,oo,dir='-')
Out[11]: 01234
integrate( )求积分

不定积分

In [12]: integrate(sin(x),x)
Out[12]: -cos(x)12

定积分

In [13]: integrate(sin(x),(x,0,pi/2))
Out[13]: 112
diff( )求导
In [14]: diff(x**3,x)
Out[14]: 3*x**2
In [15]: diff(x**3,x,2)
Out[15]: 6*x12345
dsolve( )解微分方程

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

六、面试宝典

简历模板


相关文章
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
20天前
|
并行计算 算法 安全
面试必问的多线程优化技巧与实战
多线程编程是现代软件开发中不可或缺的一部分,特别是在处理高并发场景和优化程序性能时。作为Java开发者,掌握多线程优化技巧不仅能够提升程序的执行效率,还能在面试中脱颖而出。本文将从多线程基础、线程与进程的区别、多线程的优势出发,深入探讨如何避免死锁与竞态条件、线程间的通信机制、线程池的使用优势、线程优化算法与数据结构的选择,以及硬件加速技术。通过多个Java示例,我们将揭示这些技术的底层原理与实现方法。
71 3
|
1月前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
51 10
|
2月前
|
算法 Unix 数据库
Python编程入门:从基础到实战
本篇文章将带你进入Python编程的奇妙世界。我们将从最基础的概念开始,逐步深入,最后通过一个实际的项目案例,让你真正体验到Python编程的乐趣和实用性。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。让我们一起探索Python的世界吧!
|
2月前
|
并行计算 调度 开发者
探索Python中的异步编程:从基础到实战
在Python的世界里,异步编程是一种让程序运行更加高效、响应更快的技术。本文不仅会介绍异步编程的基本概念和原理,还将通过具体代码示例展示如何在Python中实现异步操作。无论你是初学者还是有经验的开发者,都能从中获益,了解如何运用这一技术优化你的项目。
|
2月前
|
数据处理 Python
探索Python中的异步编程:从基础到实战
在Python的世界中,“速度”不仅是赛车手的追求。本文将带你领略Python异步编程的魅力,从原理到实践,我们不单单是看代码,更通过实例感受它的威力。你将学会如何用更少的服务器资源做更多的事,就像是在厨房里同时烹饪多道菜而不让任何一道烧焦。准备好了吗?让我们开始这场技术烹饪之旅。
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
76 0
|
5月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
2月前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!