2024年Python最全使用Python求解方程_python解方程,2024年最新面试高分实战

简介: 2024年Python最全使用Python求解方程_python解方程,2024年最新面试高分实战

已剪辑自: https://zhuanlan.zhihu.com/p/24893371

新年第一篇,搞起.

这回写一个好久之前想做,一直搁着没做的东西—— Python 解方程(其实是放假回家,趁着家里电脑重装 LOL 的时间过来写一篇). 咱这回用三种不同的方法,来应对平常碰到的简单方程.

Numpy 求解线性方程组

例如我们要解一个这样的二元一次方程组:

x + 2y = 3
4x + 5y = 6

当然我们可以手动写出解析解,然后写一个函数来求解,这实际上只是用 Python 来单纯做“数值计算”. 但实际上,numpy.linalg.solve 可以直接求解线性方程组.

一般地,我们设解线性方程组形如 Ax=b,其中 A 是系数矩阵,b 是一维(n 维也可以,这个下面会提到),x 是未知变量. 再拿上面地最简单的二元一次方程组为例,我们用 numpy.linalg.solve 可以这样写:

In [1]: import numpy as np
   ...: A = np.mat('1,2; 4,5')    # 构造系数矩阵 A
   ...: b = np.mat('3,6').T       # 构造转置矩阵 b (这里必须为列向量)
   ...: r = np.linalg.solve(A,b)  # 调用 solve 函数求解
   ...: print r
   ...:
Out[1]: [[-1.]
         [ 2.]]

那么前面提到的“ n 维”情形是什么呢?实际上就是同时求解多组形式相同的二元一次方程组,例如我们想同时求解这样两组:

x + 2y = 3
4x + 5y = 6

x + 2y = 7
4x + 5y = 8

就可以这样写:

In [2]: import numpy as np
   ...: A = np.mat('1,2; 4,5')          # 构造系数矩阵 A
   ...: b = np.array([[3,6], [7,8]]).T  # 构造转置矩阵 b (这里必须为列向量),
   ...: 注意这里用的是 array
   ...: r = np.linalg.solve(A,b)        # 调用 solve 函数求解
   ...: print r
   ...:
Out[2]: [[-1.         -6.33333333]
         [ 2.          6.66666667]]

SciPy 求解非线性方程组

先看官方文档的介绍:

scipy.optimize.fsolve(func, x0, args=(), fprime=None, full_output=0, col_deriv=0, xtol=1.49012e-08, maxfev=0, band=None, epsfcn=None, factor=100, diag=None)[source]

一般来说,我们只需要用到 func 和 x0 就够了. func 是自己构造的函数,也就是需要求解的方程组的左端(右端为 0),而 x0 则是给定的初值.

我们来看一个具体的例子,求解:

x + 2y + 3z - 6 = 0
5 \* (x \*\* 2) + 6 \* (y \*\* 2) + 7 \* (z \*\* 2) - 18 = 0
9 \* (x \*\* 3) + 10 \* (y \*\* 3) + 11 \* (z \*\* 3) - 30 = 0

就可以这么写:

In [3]: from scipy.optimize import fsolve
   ...:
   ...: def func(i):
   ...:     x, y, z = i[0], i[1], i[2]
   ...:     return [
   ...:             x + 2 \* y + 3 \* z - 6,
   ...:             5 \* (x \*\* 2) + 6 \* (y \*\* 2) + 7 \* (z \*\* 2) - 18,
   ...:             9 \* (x \*\* 3) + 10 \* (y \*\* 3) + 11 \* (z \*\* 3) - 30
   ...:            ]
   ...:
   ...: r = fsolve(func,[0, 0, 0])
   ...: print r
   ...:
Out[3]: [ 1.00000001  0.99999998  1.00000001]

当然,SciPy 也可以用来求解线性方程组,这是因为 scipy.optimize.fsolve 本质上是最小二乘法来逼近真实结果.

SymPy 通吃一切

例如求解一个:

x + 2 * (x ** 2) + 3 * (x ** 3) - 6 = 0

直接就是:

In [4]: from sympy import \*
   ...: x = symbols('x')
   ...: solve(x + 2 \* (x \*\* 2) + 3 \* (x \*\* 3) - 6, x)
Out[4]: [1, -5/6 - sqrt(47)\*I/6, -5/6 + sqrt(47)\*I/6]

另外,

@Wayne Shi

的这篇 使用 Python 解数学方程 ,就重点讲述了 SymPy 解线性方程组的方法,所以我也就不再赘述了。

其实 SymPy 能干的太多了,有兴趣的可以看一看 GitHub上的 Quick examples.



SymPy简介

SymPy的官方教程:

https://github.com/sympy/sympy/wiki/Quick-examples

https://docs.sympy.org/latest/tutorial/index.html

已剪辑自: https://blog.csdn.net/starter_____/article/details/81989835

SymPy是符号数学的Python库。它的目标是成为一个全功能的计算机代数系统,同时保持代码简洁、易于理解和扩展。

In [1]:from sympy import *
In [2]:x = Symbol('x')
In [3]:y = Symbol('y')123
展开与折叠

expand( )展开方程

In [8]: ((x+y)**2).expand()
Out[8]: x**2 + 2*x*y + y**212

facrot( )折叠方程

In [13]: factor(x**2 + 2*x*y + y**2)
Out[13]: (x + y)**212
分离与合并

apart( )分离整式

In [14]: together(1 + 2/(x - 1))
Out[14]: (x + 1)/(x - 1)12

together( )合并整式

In [10]: together(1/x+1/y+1/z)
Out[10]: (x*y + x*z + y*z)/(x*y*z)12
简化表达式

simplify( )普通的化简

In [15]: simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
Out[15]: x - 112

trigsimp( )三角化简

In [18]: trigsimp(sin(x)/cos(x))
Out[18]: tan(x)12

powsimp( )指数化简

In [21]: powsimp(x**a*x**b)
Out[21]: x**(a + b)12
solve( )解方程

第一个参数为要解的方程,要求右端等于0,第二个参数为要解的未知数

一元一次方程

In [7]:solve(x * 3 - 6, x)
[2]12

二元一次方程

In [8]: solve([2 * x - y - 3, 3 * x + y - 7],[x, y])
Out[8]: {x: 2, y: 1}12
limit( )求极限

dir=’+’表示求解右极限,dir=’-‘表示求解左极限

In [10]: limit(1/x,x,oo,dir='+')
Out[10]: 0
In [11]: limit(1/x,x,oo,dir='-')
Out[11]: 01234
integrate( )求积分

不定积分

In [12]: integrate(sin(x),x)
Out[12]: -cos(x)12

定积分

In [13]: integrate(sin(x),(x,0,pi/2))
Out[13]: 112
diff( )求导
In [14]: diff(x**3,x)
Out[14]: 3*x**2
In [15]: diff(x**3,x,2)
Out[15]: 6*x12345
dsolve( )解微分方程

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

六、面试宝典

简历模板


相关文章
|
2月前
|
人工智能 JavaScript API
零基础构建MCP服务器:TypeScript/Python双语言实战指南
作为一名深耕技术领域多年的博主摘星,我深刻感受到了MCP(Model Context Protocol)协议在AI生态系统中的革命性意义。MCP作为Anthropic推出的开放标准,正在重新定义AI应用与外部系统的交互方式,它不仅解决了传统API集成的复杂性问题,更为开发者提供了一个统一、安全、高效的连接框架。在过去几个月的实践中,我发现许多开发者对MCP的概念理解透彻,但在实际动手构建MCP服务器时却遇到了各种技术壁垒。从环境配置的细节问题到SDK API的深度理解,从第一个Hello World程序的调试到生产环境的部署优化,每一个环节都可能成为初学者的绊脚石。因此,我决定撰写这篇全面的实
502 67
零基础构建MCP服务器:TypeScript/Python双语言实战指南
|
2月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
340 0
|
2月前
|
缓存 Java API
Java 面试实操指南与最新技术结合的实战攻略
本指南涵盖Java 17+新特性、Spring Boot 3微服务、响应式编程、容器化部署与数据缓存实操,结合代码案例解析高频面试技术点,助你掌握最新Java技术栈,提升实战能力,轻松应对Java中高级岗位面试。
326 0
|
1月前
|
数据采集 存储 Web App开发
Python爬虫库性能与选型实战指南:从需求到落地的全链路解析
本文深入解析Python爬虫库的性能与选型策略,涵盖需求分析、技术评估与实战案例,助你构建高效稳定的数据采集系统。
236 0
|
2月前
|
缓存 监控 API
1688平台开放接口实战:如何通过API获取店铺所有商品数据(Python示列)
本文介绍如何通过1688开放平台API接口获取店铺所有商品,涵盖准备工作、接口调用及Python代码实现,适用于商品同步与数据监控场景。
|
2月前
|
存储 数据安全/隐私保护 开发者
Python深浅拷贝全解析:从原理到实战的避坑指南
在Python开发中,深浅拷贝是处理对象复制的关键概念。直接赋值仅复制引用,修改副本会影响原始数据。浅拷贝(如切片、copy方法)创建新容器但共享嵌套对象,适用于单层结构或需共享子对象的场景;而深拷贝(copy.deepcopy)递归复制所有层级,确保完全独立,适合嵌套结构或多线程环境。本文详解二者原理、实现方式及性能考量,帮助开发者根据实际需求选择合适的拷贝策略,避免数据污染与性能浪费。
200 1
|
2月前
|
存储 监控 安全
Python剪贴板监控实战:clipboard-monitor库的深度解析与扩展应用
本文介绍如何利用Python的clipboard-monitor库实现剪贴板监控系统,涵盖文本与图片的实时监听、防重复存储、GUI界面开发及数据加密等核心技术,适用于安全审计与自动化办公场景。
96 0
|
2月前
|
数据采集 存储 监控
Python爬虫实战:批量下载亚马逊商品图片
Python爬虫实战:批量下载亚马逊商品图片
|
Python
python求解一元二次方程
python求解一元二次方程
222 0
|
3月前
|
Python
Python编程基石:整型、浮点、字符串与布尔值完全解读
本文介绍了Python中的四种基本数据类型:整型(int)、浮点型(float)、字符串(str)和布尔型(bool)。整型表示无大小限制的整数,支持各类运算;浮点型遵循IEEE 754标准,需注意精度问题;字符串是不可变序列,支持多种操作与方法;布尔型仅有True和False两个值,可与其他类型转换。掌握这些类型及其转换规则是Python编程的基础。
213 33

推荐镜像

更多