2024年Python最全使用Python求解方程_python解方程,2024年最新面试高分实战

简介: 2024年Python最全使用Python求解方程_python解方程,2024年最新面试高分实战

已剪辑自: https://zhuanlan.zhihu.com/p/24893371

新年第一篇,搞起.

这回写一个好久之前想做,一直搁着没做的东西—— Python 解方程(其实是放假回家,趁着家里电脑重装 LOL 的时间过来写一篇). 咱这回用三种不同的方法,来应对平常碰到的简单方程.

Numpy 求解线性方程组

例如我们要解一个这样的二元一次方程组:

x + 2y = 3
4x + 5y = 6

当然我们可以手动写出解析解,然后写一个函数来求解,这实际上只是用 Python 来单纯做“数值计算”. 但实际上,numpy.linalg.solve 可以直接求解线性方程组.

一般地,我们设解线性方程组形如 Ax=b,其中 A 是系数矩阵,b 是一维(n 维也可以,这个下面会提到),x 是未知变量. 再拿上面地最简单的二元一次方程组为例,我们用 numpy.linalg.solve 可以这样写:

In [1]: import numpy as np
   ...: A = np.mat('1,2; 4,5')    # 构造系数矩阵 A
   ...: b = np.mat('3,6').T       # 构造转置矩阵 b (这里必须为列向量)
   ...: r = np.linalg.solve(A,b)  # 调用 solve 函数求解
   ...: print r
   ...:
Out[1]: [[-1.]
         [ 2.]]

那么前面提到的“ n 维”情形是什么呢?实际上就是同时求解多组形式相同的二元一次方程组,例如我们想同时求解这样两组:

x + 2y = 3
4x + 5y = 6

x + 2y = 7
4x + 5y = 8

就可以这样写:

In [2]: import numpy as np
   ...: A = np.mat('1,2; 4,5')          # 构造系数矩阵 A
   ...: b = np.array([[3,6], [7,8]]).T  # 构造转置矩阵 b (这里必须为列向量),
   ...: 注意这里用的是 array
   ...: r = np.linalg.solve(A,b)        # 调用 solve 函数求解
   ...: print r
   ...:
Out[2]: [[-1.         -6.33333333]
         [ 2.          6.66666667]]

SciPy 求解非线性方程组

先看官方文档的介绍:

scipy.optimize.fsolve(func, x0, args=(), fprime=None, full_output=0, col_deriv=0, xtol=1.49012e-08, maxfev=0, band=None, epsfcn=None, factor=100, diag=None)[source]

一般来说,我们只需要用到 func 和 x0 就够了. func 是自己构造的函数,也就是需要求解的方程组的左端(右端为 0),而 x0 则是给定的初值.

我们来看一个具体的例子,求解:

x + 2y + 3z - 6 = 0
5 \* (x \*\* 2) + 6 \* (y \*\* 2) + 7 \* (z \*\* 2) - 18 = 0
9 \* (x \*\* 3) + 10 \* (y \*\* 3) + 11 \* (z \*\* 3) - 30 = 0

就可以这么写:

In [3]: from scipy.optimize import fsolve
   ...:
   ...: def func(i):
   ...:     x, y, z = i[0], i[1], i[2]
   ...:     return [
   ...:             x + 2 \* y + 3 \* z - 6,
   ...:             5 \* (x \*\* 2) + 6 \* (y \*\* 2) + 7 \* (z \*\* 2) - 18,
   ...:             9 \* (x \*\* 3) + 10 \* (y \*\* 3) + 11 \* (z \*\* 3) - 30
   ...:            ]
   ...:
   ...: r = fsolve(func,[0, 0, 0])
   ...: print r
   ...:
Out[3]: [ 1.00000001  0.99999998  1.00000001]

当然,SciPy 也可以用来求解线性方程组,这是因为 scipy.optimize.fsolve 本质上是最小二乘法来逼近真实结果.

SymPy 通吃一切

例如求解一个:

x + 2 * (x ** 2) + 3 * (x ** 3) - 6 = 0

直接就是:

In [4]: from sympy import \*
   ...: x = symbols('x')
   ...: solve(x + 2 \* (x \*\* 2) + 3 \* (x \*\* 3) - 6, x)
Out[4]: [1, -5/6 - sqrt(47)\*I/6, -5/6 + sqrt(47)\*I/6]

另外,

@Wayne Shi

的这篇 使用 Python 解数学方程 ,就重点讲述了 SymPy 解线性方程组的方法,所以我也就不再赘述了。

其实 SymPy 能干的太多了,有兴趣的可以看一看 GitHub上的 Quick examples.



SymPy简介

SymPy的官方教程:

https://github.com/sympy/sympy/wiki/Quick-examples

https://docs.sympy.org/latest/tutorial/index.html

已剪辑自: https://blog.csdn.net/starter_____/article/details/81989835

SymPy是符号数学的Python库。它的目标是成为一个全功能的计算机代数系统,同时保持代码简洁、易于理解和扩展。

In [1]:from sympy import *
In [2]:x = Symbol('x')
In [3]:y = Symbol('y')123
展开与折叠

expand( )展开方程

In [8]: ((x+y)**2).expand()
Out[8]: x**2 + 2*x*y + y**212

facrot( )折叠方程

In [13]: factor(x**2 + 2*x*y + y**2)
Out[13]: (x + y)**212
分离与合并

apart( )分离整式

In [14]: together(1 + 2/(x - 1))
Out[14]: (x + 1)/(x - 1)12

together( )合并整式

In [10]: together(1/x+1/y+1/z)
Out[10]: (x*y + x*z + y*z)/(x*y*z)12
简化表达式

simplify( )普通的化简

In [15]: simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
Out[15]: x - 112

trigsimp( )三角化简

In [18]: trigsimp(sin(x)/cos(x))
Out[18]: tan(x)12

powsimp( )指数化简

In [21]: powsimp(x**a*x**b)
Out[21]: x**(a + b)12
solve( )解方程

第一个参数为要解的方程,要求右端等于0,第二个参数为要解的未知数

一元一次方程

In [7]:solve(x * 3 - 6, x)
[2]12

二元一次方程

In [8]: solve([2 * x - y - 3, 3 * x + y - 7],[x, y])
Out[8]: {x: 2, y: 1}12
limit( )求极限

dir=’+’表示求解右极限,dir=’-‘表示求解左极限

In [10]: limit(1/x,x,oo,dir='+')
Out[10]: 0
In [11]: limit(1/x,x,oo,dir='-')
Out[11]: 01234
integrate( )求积分

不定积分

In [12]: integrate(sin(x),x)
Out[12]: -cos(x)12

定积分

In [13]: integrate(sin(x),(x,0,pi/2))
Out[13]: 112
diff( )求导
In [14]: diff(x**3,x)
Out[14]: 3*x**2
In [15]: diff(x**3,x,2)
Out[15]: 6*x12345
dsolve( )解微分方程

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

六、面试宝典

简历模板


相关文章
|
7天前
|
数据采集 数据可视化 数据挖掘
数据挖掘实战:使用Python进行数据分析与可视化
在大数据时代,Python因其强大库支持和易学性成为数据挖掘的首选语言。本文通过一个电商销售数据案例,演示如何使用Python进行数据预处理(如处理缺失值)、分析(如销售额时间趋势)和可视化(如商品类别销售条形图),揭示数据背后的模式。安装`pandas`, `numpy`, `matplotlib`, `seaborn`后,可以按照提供的代码步骤,从读取CSV到数据探索,体验Python在数据分析中的威力。这只是数据科学的入门,更多高级技术等待发掘。【6月更文挑战第14天】
44 11
|
7天前
|
数据采集 存储 数据挖掘
Python网络爬虫实战:抓取并分析网页数据
使用Python的`requests`和`BeautifulSoup`,本文演示了一个简单的网络爬虫,抓取天气网站数据并进行分析。步骤包括发送HTTP请求获取HTML,解析HTML提取温度和湿度信息,以及计算平均温度。注意事项涉及遵守robots.txt、控制请求频率及处理动态内容。此基础爬虫展示了数据自动收集和初步分析的基础流程。【6月更文挑战第14天】
75 9
|
8天前
|
数据采集 机器学习/深度学习 数据可视化
数据挖掘实战:Python在金融数据分析中的应用案例
Python在金融数据分析中扮演关键角色,用于预测市场趋势和风险管理。本文通过案例展示了使用Python库(如pandas、numpy、matplotlib等)进行数据获取、清洗、分析和建立预测模型,例如计算苹果公司(AAPL)股票的简单移动平均线,以展示基本流程。此示例为更复杂的金融建模奠定了基础。【6月更文挑战第13天】
35 3
|
8天前
|
数据采集 前端开发 Python
Python3网络开发实战读后感
Python3网络开发实战读后感
|
9天前
|
机器学习/深度学习 传感器 算法
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
|
9天前
|
机器学习/深度学习 存储 算法
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
|
9天前
|
机器学习/深度学习 算法 数据库
【功能超全】基于OpenCV车牌识别停车场管理系统软件开发【含python源码+PyqtUI界面+功能详解】-车牌识别python 深度学习实战项目
【功能超全】基于OpenCV车牌识别停车场管理系统软件开发【含python源码+PyqtUI界面+功能详解】-车牌识别python 深度学习实战项目
|
7天前
|
测试技术 虚拟化 云计算
GitHub高赞!速通Python编程基础手册,被玩出花了!
随着云时代的来临,Python 语言越来越被程序开发人员喜欢和使用,因为其不仅简单易学,而且还有丰富的第三方程序库和相应完善的管理工具。 从命令行脚本程序到 GUI程序,从图形技术到科学计算,从软件开发到自动化测试,从云计算到虚拟化,所有这些领域都有 Python 的身影。 今天给小伙伴们分享的这份手册采用以任务为导向的编写模式,全面地介绍了 Python 编程基础及其相关知识的应用,讲解了如何利用 Python 的知识解决部分实际问题。
GitHub高赞!速通Python编程基础手册,被玩出花了!
|
5天前
|
开发者 Python
【干货】Python编程惯例
【干货】Python编程惯例
10 1
|
7天前
|
Shell Python
GitHub星标破千Star!Python游戏编程的初学者指南
Python 是一种高级程序设计语言,因其简洁、易读及可扩展性日渐成为程序设计领域备受推崇的语言。 目前的编程书籍大多分为两种类型。第一种,与其说是教编程的书,倒不如说是在教“游戏制作软件”,或教授使用一种呆板的语言,使得编程“简单”到不再是编程。而第二种,它们就像是教数学课一样教编程:所有的原理和概念都以小的应用程序的方式呈现给读者。