Python分析香港26281套在售二手房数据

简介: Python分析香港26281套在售二手房数据

描述性统计

相关性分析

从相关系数表和回归图来看,间隔(即居室)和楼龄都与香港二手房房价无明显的相关性。实用面积与房价具有较强的正相关性,一般来说,人们在看房子时看到的面积是建筑面积,但却不是实用面积。套内建筑面积=套内使用面积+套内墙体面积+阳台面积,而实用面积就是套内使用面积。另外,实用率与房价也无相关性,这与大部分人的感性认识存在偏差。

技术实现


本文数据来源于中原地产,网页结构相对简单。数据清洗主要用到Python的pandas库,由于内容较多,仅提供核心字段清洗代码。数据可视化主要用到Python的pyecharts库,都是一些基础图表,本公众号往期原创文章也已多次提及。

数据获取

爬虫核心代码
#将繁体转换成简体
def tradition2simple(line):
return Converter(‘zh-hans’).convert(line)
#解析网页
def get_page(page):
if page <11:
url = ‘http://hk.centanet.com/findproperty/BLL/Result_SearchHandler.ashx?url=http%3A%2F%2Fhk.centanet.com%2Ffindproperty%2Fzh-HK%2FHome%2FSearchResult%3Fposttype%3DS%26src%3DC%26minprice%3D%26maxprice%3D%26sortcolumn%3D%26sorttype%3D%26limit%3D100%26currentpage%3D{0}’.format(page)
else:
url = ‘http://hk.centanet.com/findproperty/BLL/Result_SearchHandler.ashx?url=http%3A%2F%2Fhk.centanet.com%2Ffindproperty%2Fzh-HK%2FHome%2FSearchResult%3Fposttype%3DS%26src%3DC%26minprice%3D%26maxprice%3D%26sortcolumn%3D%26sorttype%3D%26limit%3D-1%26currentpage%3D{0}’.format(page)
req = requests.get(url, headers = headers)
bs = req.json()

print(bs)

ts = tradition2simple(bs[‘post’])

print(ts)

html = etree.HTML(ts)
if name == ‘main’:
ua = UserAgent(verify_ssl=False)
headers = {“User-Agent”: ua.random}
for page in range(1,2624): #共2623页
get_page(page)

time.sleep(1)

print(“第%d页爬取完成”%page)
print(‘-’*100)
数据预览

数据清洗

建筑面积/单价
#异常字符替换为空
df[“建筑面积”] = df[“建筑面积”].str.replace(“,”,“”).astype(“float”)
df[“建面单价”] = df[“建面单价”].str.replace(“$”,“”).str.replace(“,”,“”).str.replace(“/呎”,“”).astype(“float”)
#建筑面积和建面单价缺失值用均值填充
df = df.fillna(value={‘建筑面积’:df[“建筑面积”].mean(),‘建面单价’:df[“建面单价”].mean()})
间隔

存在缺失值、换行符、非数字型、无房间数等脏数据

df[“间隔”] = df[“间隔”].str.replace(“\r\n”,“”).str[:1]
df = df[ ~ df[‘间隔’].isin([‘(’])] #删除某列包含特殊字符的行
df[“间隔”] = df[“间隔”].str.replace(“开”,“0”).astype(“float”)
df = df.fillna(value={‘间隔’:df[“间隔”].mean()})
df[“间隔”] = df[“间隔”].astype(“int”)
售价
#售价单位存在万和亿,进行统一化处理
df[“售价”] = (df[“售价”].str.replace(“$”,“”).str.replace(“,”,“”).str[:-1].astype(float) * df[‘售价’].str[-1].map({“万”: 1, “亿”: 10000})).astype(“int”)

数据可视化

回归图
fig,axes=plt.subplots(5,1,figsize=(12,30))
sns.regplot(x=‘间隔’,y=‘实用单价’,data=df1,color=‘green’,marker=‘*’,ax=axes[0])
sns.regplot(x=‘楼龄’,y=‘实用单价’,data=df1,color=‘green’,marker=‘*’,ax=axes[1])
sns.regplot(x=‘实用面积’,y=‘实用单价’,data=df1,color=‘green’,marker=‘*’,ax=axes[2])
sns.regplot(x=‘建筑面积’,y=‘实用单价’,data=df1,color=‘green’,marker=‘*’,ax=axes[3])
sns.regplot(x=‘实用率’,y=‘实用单价’,data=df1,color=‘green’,marker=‘*’,ax=axes[4])
条形图
df5 = df1.groupby(‘屋苑位置’)[‘实用单价’].count()
df5 = df5.sort_values(ascending=True)
df5 = df5.tail(10)
print(df5.index.to_list())
print(df5.to_list())
c = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.WONDERLAND))
.add_xaxis(df5.index.to_list())
.add_yaxis(“”,df5.to_list()).reversal_axis() #X轴与y轴调换顺序

现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习


相关文章
|
25天前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
83 35
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
61 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
26天前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
233 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
16天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
85 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
4天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
1月前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
79 37
Python时间序列分析工具Aeon使用指南
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
69 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
1月前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
30天前
|
数据采集 缓存 API
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。
|
2月前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控

热门文章

最新文章