深度学习500问——Chapter04:经典网络解读(2)

简介: 深度学习500问——Chapter04:经典网络解读(2)

4.5 VGGNet

4.5.1 模型介绍

VGGNet是由牛津大学视觉几何小组(Visual Geometry Group,VGG)提出的一种深层卷积网络结构,它们以7.32%的错误率赢得了2014年ILSVRC分类任务的亚军(冠军由GoogLeNet以6.65%的错误率夺得)和25.32%的错误率夺得定位任务(Localization)的第一名(GooleNet错误率为26.44%)[5],网络名称VGGNet取自该小组名缩写。VGGNet是首批把图像分类的错误率降低到10%以内模型,同时该网络所采用的$3\times3$卷积核的思想是后来许多模型的基础,该模型发表在2015年国际学习表征会议(International Conference On Learning Representations, ICLR)后至今被引用的次数已经超过1万4千余次。

4.5.2 模型结构

图 4.7 VGG16网络结构图

在原论文中的VGGNet包含了6个版本的演进,分别对应VGG11、VGG11-LRN、VGG13、VGG16-1、VGG16-3和VGG19,不同的后缀数值表示不同的网络层数(VGG11-LRN表示在第一层中采用了LRN的VGG11,VGG16-1表示后三组卷积块中最后一层卷积采用核尺寸为1×1,相应的VGG16-3表示卷积核尺寸为3×3),本节介绍的VGG16为VGG16-3。图4.7中的VGG16体现了VGGNet的核心思路,使用3×3的卷积组合替代大尺寸的卷积(2个3×3卷积即可与5×5卷积拥有相同的感受视野),网络参数设置如表4.5所示。

表4.5 VGG16网络参数配置

image.png

4.5.3 模型特性

  • 整个网络都使用了同样大小的卷积核尺寸3×3和最大池化尺寸2×2
  • 1×1卷积的意义主要在于线性变换,而输入通道数和输出通道数不变,没有发生降维。
  • 两个3×3的卷积层串联相当于1个5×5的卷积层,感受野大小为5×5。同样地,3个3×3的卷积层串联的效果则相当于1个7×7的卷积层。这样的连接方式使得网络参数量更小,而且多层的激活函数令网络对特征的学习能力更强。
  • VGGNet在训练时有一个小技巧,先训练浅层的简单网络VGG11,再复用VGG11的权重来出初始化VGG13,如此反复训练并初始化VGG19.能够使训练时收敛的速度更快。
  • 在训练过程中使用多尺度的变换对原始数据做数据增强,使得模型不易过拟合。

4.6 GoogLeNet

4.6.1 模型介绍

GooLeNet作为2014年ILSVRC在分类任务上的冠军,以6.65%的错误率力压VGGNet等模型,在分类的准确率上面相比过去两届冠军ZFNet和AlexNet都有很大的提升。从名字GoogLeNet可以知道这是来自谷歌工程师所设计的网络结构,而名字中的GoogLeNet更是致敬了LeNet[0]。GoogLeNet中最核心的部分是其内部子网络结构Inception,该结构灵感来源于NIN,至今已经经历了四次版本迭代(Inceptionv1−4)。

图 4.8 Inception性能比较图

4.6.2 模型结构

图4.9 GoogLeNet网络结构图如图4.9所示,GoogLeNet相比于以为的卷积神经网络结构,除了在深度上进行了延伸,还对网络的宽度进行了扩展,整个网络由许多块状子网络的堆叠而成,这个子网络构成了Inception结构。图4.9为Inception的四个版本:Inceptionv1在同一层中采用不同的卷积核,并对卷积结果进行合并;Inceptionv2组合不同卷积核的堆叠形式,并对卷积结果进行合并;Inceptionv3则在v2基础上进行深度组合的尝试;Inceptionv4结构相比于前面的版本更加复杂,子网络中嵌套者子网络。

  • Inceptionv1

  • Inceptionv2

  • Inceptionv3

  • Inceptionv4

图 4.10 Inceptionv14结构图

表 4.6 GoogLeNet中Inceptionv1网络参数配置

网络层 输入尺寸 核尺寸 输出尺寸

参数个数

卷积层C11 H×W×C1 1×1×C2/21×1 H2×W2×C2

(1×1×C1+1)×C2

卷积层C21 H×W×C2 1×1×C2/21×1 H2×W2×C2

(1×1×C2+1)×C2

卷积层C22 H×W×C2 3×3×C2/13×3 H×W×C2/1

(3×3×C2+1)×C2

卷积层C31 H×W×C1 1×1×C2/21×1 H2×W2×C2

(1×1×C1+1)×C2

卷积层C32 H×W×C2 5×5×C2/15×5 H×W×C2/1

(5×5×C2+1)×C2

下采样层C41 H×W×C1 3×3/2 H2×W2×C2

0

卷积层C42 H2×W2×C2 1×1×C2/11×1 H2×W2×C2

(3×3×C2+1)×C2

合并层M H2×W2×C2(×4) 拼接 H2×W2×(C2×4)

0


4.6.3 模型特性

  • 采用不同大小的卷积核意味着不同大小的感受野,最后拼接意味着不同尺度特征的融合;
  • 之所以卷积核大小采用1、3和5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定pad=0、1、2,那么卷积之后便可以得到相同维度的特征,然后这些特征就可以直接拼接在一起了;
  • 网络越到后面,特征越抽象,而且每个特征所涉及的感受野也更大了,因此随着层数的增加,3x3和5x5卷积的比例也要增加。但是,使用5x5的卷积核仍然会带来巨大的计算量。 为此,文章借鉴NIN2,采用1x1卷积核来进行降维。

4.7 为什么现在的CNN模型都是在GoogleNet、VGGNet或者AlexNet上调整的

  • 评测对比:为了让自己的结果更有说服力,在发表自己成果的时候会同一个标准的baseline及在baseline上改进而进行比较,常见的比如各种检测分割的问题都会基于VGG或者Resnet101这样的基础网络。
  • 时间和精力有限:在科研压力和工作压力中,时间和精力只允许大家在有限的范围探索。
  • 模型创新难度大:进行基本模型的改进需要大量的实验和尝试,并且需要大量的实验积累和强大灵感,很有可能投入产出比比较小。
  • 资源限制:创造一个新的模型需要大量的时间和计算资源,往往在学校和小型商业团队不可行。
  • 在实际的应用场景中,其实是有大量的非标准模型的配置。

参考文献

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, november 1998.

[2] A. Krizhevsky, I. Sutskever and G. E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25. Curran Associates, Inc. 1097–1105.

[3] LSVRC-2013. ImageNet Large Scale Visual Recognition Competition 2013 (ILSVRC2013)

[4] M. D. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. European Conference on Computer Vision.

[5] M. Lin, Q. Chen, and S. Yan. Network in network. Computing Research Repository, abs/1312.4400, 2013.

[6] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. International Conference on Machine Learning, 2015.

[7] Bharath Raj. a-simple-guide-to-the-versions-of-the-inception-network, 2018.

[8] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, 2016.

[9] Sik-Ho Tsang. review-inception-v4-evolved-from-googlenet-merged-with-resnet-idea-image-classification, 2018.

[10] Zbigniew Wojna, Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens. Rethinking the Inception Architecture for Computer Vision, 2015.

[11] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. Going deeper with convolutions, 2014.

目录
相关文章
|
18天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
200 55
|
28天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
152 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
56 31
|
21天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
28天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
70 3
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
67 8
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
271 7
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
53 1

热门文章

最新文章