随着互联网的快速发展,招聘网站已成为求职者与雇主之间的重要桥梁。然而,随之而来的欺诈行为也日益猖獗,给求职者带来了极大的困扰和风险(点击文末“阅读原文”获取完整代码数据)。
视频
因此,如何帮助客户有效地识别和防范招聘网站上的欺诈行为,已成为一个亟待解决的问题。
逻辑回归模型作为一种强大的分类工具,在识别欺诈行为方面具有独特的优势。它能够根据输入的特征,通过训练和学习,自动发现数据中的规律和模式,从而实现对欺诈行为的准确预测。在招聘网站的欺诈检测中,逻辑回归模型可以帮助我们快速识别出潜在的欺诈行为,保护求职者的合法权益。
本文将通过视频讲解,展示如何用N-Gram、逻辑回归模型分析招聘网站欺诈可视化,并结合R语言逻辑回归logistic模型ROC曲线可视化分析2个例子的代码数据,为读者提供一套完整的实践数据分析流程。
一、数据整理
首先,我们从招聘网站上收集了大量数据,包括职位名称、职位描述、行业分类、岗位要求等信息。接下来,我们对数据进行了清洗和预处理,去除空值、重复项和异常值,确保数据的准确性和完整性。
二、探索性数据分析
为了深入了解数据的分布和特征,我们进行了探索性数据分析。使用直方图、箱线图等可视化工具,我们分析了各个特征的分布情况,包括职位数量、行业分布、薪资水平等。此外,我们还利用词云图对职位描述中的关键词进行了可视化展示,以便更直观地了解招聘市场的热点和趋势。
三、特征工程
特征工程是机器学习建模的关键步骤。我们首先对文字信息进行了预处理,包括分词、去除停用词、词干提取等。接着,我们利用N-Gram分析提取了职位描述中的词组特征,以捕捉更多的语义信息。此外,我们还进行了特征合并,将行业、岗位和描述信息结合起来,形成更具代表性的特征。在特征选择方面,我们根据相关性分析和重要性评估,去除了不相关的特征,以降低模型的复杂度。
四、建模
在本研究中,我们选择了逻辑回归模型作为分析工具。逻辑回归是一种广泛应用于分类问题的机器学习算法,它能够根据输入特征预测目标变量的概率分布。我们将经过特征工程处理后的数据输入到逻辑回归模型中,通过训练和优化模型参数,使其能够准确识别招聘网站上的欺诈行为。
五、模型评估
为了评估模型的性能,我们使用了混淆矩阵来衡量准确性。混淆矩阵展示了模型在不同类别上的分类结果,包括真正例、假正例、真反例和假反例。通过计算准确率、召回率、F1值等指标,我们全面评估了模型在识别招聘欺诈方面的表现。此外,我们还对模型的稳定性进行了检验,确保其在不同数据集上都能保持较好的性能。
六、结论与展望
通过逻辑回归模型的分析,我们成功地识别了招聘网站上的欺诈行为,并揭示了欺诈行为的一些典型特征。这为招聘网站和求职者提供了有益的参考,有助于维护招聘市场的公平和诚信。然而,本研究还存在一些局限性,如模型假设的简化等。未来,我们将进一步拓展数据来源,优化模型结构,提高模型的泛化能力和鲁棒性,以更好地应对招聘欺诈问题。
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
本文利用R语言,通过逐步逻辑回归模型帮助客户分析两个实际案例:麻醉剂用量对手术病人移动的影响以及汽车购买行为预测。通过构建模型并解释结果,我们探究了各自变量对因变量的影响程度。同时,借助ROC曲线可视化分析,评估了模型的预测性能。本文旨在为相关领域的研究提供方法学参考和实际应用指导。
R语言分析麻醉剂用量(conc)对手术病人是否移动(nomove)的影响
在医学实践中,麻醉剂用量的精确控制对于手术过程的顺利进行和病人的术后恢复至关重要。随着医疗技术的不断发展,数据分析和统计学方法在医学研究中的应用日益广泛。本文旨在通过逻辑回归模型,探究麻醉剂用量(conc)对手术病人是否移动(nomove)的影响。逻辑回归是一种广泛应用于二元响应变量分析的统计方法,它可以帮助我们理解自变量与因变量之间的概率关系。本文使用的数据集包含了一组医学数据,其中变量conc表示麻醉剂的用量,而nomove作为因变量,用于表示手术病人是否有所移动。
首先载入数据集并读取部分文件,为了观察两个变量之间关系,我们可以利cdplot函数来绘制条件密度图
head(anesthetic)
chart.Correlation(anesthetic, method="spearman", histogram=TRUE, pch=16)
cdplot(factor(nomove)~conc,data=anesthetic,main='条件密度图',ylab='病人移动',xlab='麻醉剂量')
从图中可见,随着麻醉剂量加大,手术病人倾向于静止。下面利用logistic回归进行建模,得到intercept和conc的系数为-6.47和5.57,由此可见麻醉剂量超过1.16(6.47/5.57)时,病人静止概率超过50%。
偏差残差:这是逻辑回归模型拟合后每个观测值与模型预测值之间的差异。从最小值-1.76666到最大值2.06900,我们可以看到数据点的分布。通常,我们希望这些残差接近0,并且分布均匀。
系数:
- 截距 (Intercept) : -6.469。这是当模型中的其他变量都为0时,预测值的起点。这里的截距为负,可能意味着在没有其他因素影响时,某个特定的结果(例如,响应变量为1的概率)是较低的。
- conc: 5.567。这是anes1数据集中conc变量的系数。它表示当conc每增加一个单位时,响应变量(通常是二元结果,如1或0)的对数几率平均增加5.567个单位。这通常意味着conc与响应变量之间存在正相关关系。
显著性代码:输出还提供了系数的显著性水平。例如,'***' 表示该系数的p值小于0.001,是非常显著的。这意味着我们可以非常确信conc与响应变量之间的关系不仅仅是偶然的。
分散参数:对于二项分布家族,分散参数通常被设为1,这里也是如此。
偏差统计:
- Null偏差:这是仅包含截距的模型的偏差,用于比较完整模型的效果。在这里,Null偏差为82.911,表示在没有其他预测变量的情况下,模型与数据的拟合程度。
- 残差偏差:这是包含所有预测变量的完整模型的偏差。残差偏差为55.508,比Null偏差小,说明添加conc变量后,模型对数据的拟合度有所提高。
AIC (赤池信息准则) :这是一个衡量模型拟合度的指标,同时考虑了模型的复杂性和拟合度。较低的AIC值通常表示模型更好。这里的AIC为59.508。
Fisher评分迭代次数:在逻辑回归模型拟合过程中,算法使用了5次迭代来收敛到最终的系数估计。
综上所述,anes1数据集中的conc变量与响应变量之间存在显著的正相关关系,而逻辑回归模型在拟合数据方面表现良好。这些结果提供了关于conc如何影响响应变量的有用信息。
对模型做出预测结果
根据不同的临界值threshold来计算TPR和FPR,之后绘制成图
for (i in 1:n){ threshold=data$prob[i] tp=sum(data$prob>threshld&data$obs==1) fp=sum(data$prob>thresold&data$obs==0) tn=sum(data$prob)
上面的方法是使用原始的0-1数据进行建模,即每一行数据均表示一个个体,另一种是使用汇总数据进行建模,先将原始数据按下面步骤进行汇总
gate(aneshetic[,c('move','nostheic$conc),FUN=sum)
对于汇总数据,有两种方法可以得到同样的结果,一种是将两种结果的向量合并做为因变量,如anes2模型。另一种是将比率做为因变量,总量做为权重进行建模,如anes3模型。这两种建模结果是一样的。
根据logistic模型,我们可以使用predict函数来预测结果,下面根据上述模型来绘图:
【视频】N-Gram、逻辑回归反欺诈模型文本分析招聘网站欺诈可视化讲解|附数据代码2:https://developer.aliyun.com/article/1501327