【视频】N-Gram、逻辑回归反欺诈模型文本分析招聘网站欺诈可视化讲解|附数据代码2

简介: 【视频】N-Gram、逻辑回归反欺诈模型文本分析招聘网站欺诈可视化讲解|附数据代码

【视频】N-Gram、逻辑回归反欺诈模型文本分析招聘网站欺诈可视化讲解|附数据代码1:https://developer.aliyun.com/article/1501318


R语言逻辑回归模型分析汽车购买行为

数据描述

用R语言做logistic regression,建模及分析报告,得出结论,数据有一些小问题,  现已改正重发:改成以“是否有汽车购买意愿(1买0不买)”为因变量,以其他的一些  项目为自变量,来建模分析,目的是研究哪些变量对用户的汽车购买行为的影响较为  显著。

问题描述

 我们尝试并预测个人是否可以根据数据中可用的人口统计学变量使用逻辑回归预测是否有汽车购买意愿(1买0不买)。 在这个过程中,我们将:

1.导入数据

2.检查类别偏差

3.创建训练和测试样本

4.建立logit模型并预测测试数据

5.模型诊断

数据描述分析

查看部分数据

dccce66c1aa43a2f44b80e4ffd9cf6f1.png 对数据进行描述统计分析:

d0aad90fbb02d7535d4f5394edb5a5bc.png

从上面的结果中我们可以看到每个变量的最大最小值中位数和分位数等等。

9e791da40cfcbad0b030588eeb893140.png

检查类偏差

 

理想情况下,Y变量中事件和非事件的比例大致相同。所以,我们首先检查因变量是否有汽车购买意愿中的类的比例。

c339a183478c15c14d1140166f98a409.png

显然,不同购买意愿.人群比例 有偏差 。所以我们必须以大致相等的比例对观测值进行抽样,以获得更好的模型。

建模分析

创建训练和试验样本

解决类别偏差问题的一个方法是以相等的比例绘制训练数据(开发样本)的0和1。在这样做的时候,我们将把其余的inputData不包含在testData 中。

构建Logit模型和预测

全变量模型

  fbeee1a6074aa22ae58f246c2f564db6.png


从全变量模型的结果来看,可以发现得到的模型变量并不显著,因此需要重新建模

筛选出显著的变量:

逐步回归筛选后模型

ad0a777e887342ea8a775ff813869bfb.png

从上面的回归结果中,我们可以看到公共汽.电.车车辆数.辆.,公交客运总量.万人次. ,私人汽车保有量.辆.,地铁长度 ,日最高温度.F.的最大值 ,摩托车数量  对是否有汽车购买意愿有重要的影响。从中同时可以看到公交客运总量.万人次. ,私人汽车保有量.辆.,地铁长度 , 日最高温度.F.的最大值和是否有汽车购买意愿存在正相关的关系。

确定模型的最优预测概率截止值

默认的截止预测概率分数为0.5或训练数据中1和0的比值。 但有时,调整概率截止值可以提高开发和验证样本的准确性。InformationValue :: optimalCutoff功能提供了找到最佳截止值以提高1,0,1和0的预测的方法,并减少错误分类错误。 可以计算最小化上述模型的错误分类错误的最优分数。

 

misClassError(testData$是否有汽车购买意愿.1买0不买., predicted, threshold = optCutOff)

0c59d13e6e5a72f52e044a09fd2c7644.png

ROC

ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏感性为纵坐标、(1-特异性)为横坐标绘制成曲线,曲线下面积越大,诊断准确性越高。在ROC曲线上,最靠近坐标图左上方的点为敏感性和特异性均较高的临界值。

ab407b68a0344305143d76207fc9ef24.png


上述型号的ROC曲线面积为61%,相当不错。

 

一致性

简单来说,在1-0  的所有组合中,一致性是预测对的百分比 ,一致性越高,模型的质量越好。

bf614184dd264d99b07d5367054fb5c1.png

上述的61%的一致性确实是一个很好的模型。

特异性和敏感性

敏感度(或真正正率)是模型正确预测的1(实际)的百分比,而特异性是0(实际)正确预测的百分比。特异性也可以计算为1-假阳性率。

 

specificity(testData$是否有汽车购买意愿.1买0不买., predicted, threshold = optCutOff)


eb182f5b5f3ca12ec3896ad48a88270d.png

以上数字是在不用于训练模型的验证样本上计算的。所以测试数据的真实检测率为99%是好的。

相关文章
|
机器学习/深度学习 监控 算法
信用风险评估评分卡建模方法及原理| 学习笔记
快速学习信用风险评估评分卡建模方法及原理。
信用风险评估评分卡建模方法及原理| 学习笔记
|
7月前
|
JSON 自然语言处理 供应链
R语言主题模型LDA文本挖掘评估公司面临的风险领域与可视化
R语言主题模型LDA文本挖掘评估公司面临的风险领域与可视化
|
3月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能金融市场预测
使用Python实现智能金融市场预测
45 0
|
7月前
|
机器学习/深度学习 数据可视化 算法
R语言神经网络与决策树的银行顾客信用评估模型对比可视化研究
R语言神经网络与决策树的银行顾客信用评估模型对比可视化研究
|
7月前
|
机器学习/深度学习 算法 Python
数据分享|Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户
数据分享|Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户
|
7月前
|
机器学习/深度学习 自然语言处理 数据可视化
【视频】N-Gram、逻辑回归反欺诈模型文本分析招聘网站欺诈可视化讲解|附数据代码1
【视频】N-Gram、逻辑回归反欺诈模型文本分析招聘网站欺诈可视化讲解|附数据代码
|
7月前
|
机器学习/深度学习 算法 搜索推荐
数据分享|R语言谱聚类社会化推荐挖掘协同过滤电影社交网站Flixster数据集应用研究
数据分享|R语言谱聚类社会化推荐挖掘协同过滤电影社交网站Flixster数据集应用研究
|
7月前
|
机器学习/深度学习 自然语言处理 数据可视化
数据分享|R语言SVM支持向量机、文本挖掘新闻语料情感情绪分类和词云可视化
数据分享|R语言SVM支持向量机、文本挖掘新闻语料情感情绪分类和词云可视化
|
7月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言用CPV模型的房地产信贷信用风险的度量和预测
R语言用CPV模型的房地产信贷信用风险的度量和预测
|
7月前
|
数据可视化 安全
游客森林公园游憩需求调查数据回归模型和可视化分析
游客森林公园游憩需求调查数据回归模型和可视化分析