数据分享|Python用PyMC3贝叶斯模型平均BMA:采样、信息准则比较和预测可视化灵长类动物的乳汁成分数据

简介: 数据分享|Python用PyMC3贝叶斯模型平均BMA:采样、信息准则比较和预测可视化灵长类动物的乳汁成分数据

全文链接:https://tecdat.cn/?p=33449


当面对多个模型时,我们有多种选择点击文末“阅读原文”获取完整代码数据


模型选择因其简单性而具有吸引力,但我们正在丢弃有关模型中不确定性的信息。

print(f"Runing

image.png

模型平均


一种替代方法是执行模型选择,但讨论所有不同的模型以及给定信息准则的计算值。重要的是要将所有这些数字和测试放在我们问题的背景下,以便我们和客户能够更好地了解方法可能存在的局限性和缺点。如果你在学术界,你可以使用这种方法向论文、演示文稿、论文等的讨论部分添加元素。

另一种方法是执行模型平均。现在的想法是使用模型的加权平均值生成元模型(和元预测)。有几种方法可以做到这一点,PyMC3 包括其中的 3 种,我们将简要讨论,您将在 Yuling Yao 等人的工作中找到更彻底的解释。

伪贝叶斯模型平均

贝叶斯模型可以通过其边缘概率进行加权,这被称为贝叶斯模型平均。我们可以使用以下公式来做到这一点:

image.png

这种方法称为伪贝叶斯模型平均或类似赤池的加权,是一种启发式方法,用于根据信息标准值计算每个模型(给定一组固定的模型)的相对概率。看看分母只是一个归一化项,以确保权重总和为 1。

使用贝叶斯自举进行伪贝叶斯模型平均

上述计算权重的公式是一种非常好且简单的方法,但它没有考虑 IC 计算中的不确定性。

堆叠

在PyMC3中实现的第三种方法被称为预测分布的堆叠,并且最近被提出。我们希望在一个元模型中组合多个模型,以最小化元模型和真实生成模型之间的分歧,当使用对数评分规则时,这相当于:

image.png

加权后验预测样本

一旦我们计算了权重,使用上述 3 种方法中的任何一种,我们就可以使用它们来获得加权后验预测样本。PyMC3 提供了以简单方式执行这些步骤的函数,因此让我们通过示例查看它们的实际效果。

简而言之,我们的问题如下:我们想探索几种灵长类动物的乳汁成分数据查看文末了解数据免费获取方式,假设来自大脑较大的灵长类动物的雌性产生更有营养的牛奶(这样做是为了*支持这种大大脑的发育)。对于进化生物学家来说,这是一个重要的问题,为了给出和回答,我们将使用3个变量,两个预测变量:新皮层的比例与总质量的比较 大脑和母亲体重的对数。对于预测变量,每克牛奶的千卡。使用这些变量,我们将构建 3 个不同的线性模型:

  1. 仅使用新皮层变量的模型
  2. 仅使用质量变量对数的模型
  3. 使用两个变量的模型
d.iloc[:, 1:] = d.iloc[:, 1:] - d.iloc[:, 1:].mean()
d.head()

image.png

现在我们有了数据,我们将仅使用 neocortex

with pm.Model() as model_0:
  
    trace_0 = pm.sample(2000, return_inferencedata=True)

image.png

第二个模型与第一个模型完全相同,只是我们现在使用质量的对数

with pm.Model() as model_1:
 
    trace_1 = pm.sample(2000, return_inferencedata=True)

image.png

最后是第三个模型使用 neocortex和 变量log_mass

with pm.Model() as model_2:
   
    trace_2 = pm.sample(2000, return_inferencedata=True)

image.png

现在我们已经对 3 个模型的后验进行了采样,我们将对它们进行视觉比较。一种选择是使用forestplot支持绘制多个迹线的函数。

az.plot_fo

image.png

另一种选择是在同一图中绘制多条迹线是使用densityplot


点击标题查阅往期内容


R语言用贝叶斯线性回归、贝叶斯模型平均 (BMA)来预测工人工资


01

02

03

04


az.plot_d

image.png

现在我们已经对 3 个模型的后验进行了采样,我们将使用 WAIC(广泛适用的信息标准)来比较 3 个模型。我们可以使用 PyMC3 附带的compare功能来做到这一点。

comp = az.compare(model_dict)
comp

image.png

我们可以看到最好的模型是,具有两个预测变量的模型。请注意,数据帧按从最低到最高 WAIC 的顺序(最差的模型)。

现在,我们将使用copmuted来生成预测,而不是基于单个模型,而是基于加权模型集。

ppc_w = pm.sample_posterior_predictive_w(

image.png

请注意,我们正在传递按其索引排序的权重。

我们还将计算最低 WAIC 模型的 PPC

ppc_2 = pm.sample_posterior_predi

比较这两种预测的一种简单方法是绘制它们的平均值和 hpd 区间

plt.yticks([])
plt.ylim(-1, 2)
plt.legend();

image.png

正如我们所看到的,两个预测的平均值几乎相同,但加权模型中的不确定性更大。我们已经有效地将我们应该选择哪个模型的不确定性传递到后验预测样本中。


结语:


还有其他方法可以平均模型,例如,显式构建一个包含我们拥有的所有模型的元模型。然后,我们在模型之间跳转时执行参数推理。这种方法的一个问题是,在模型之间跳跃可能会妨碍后验的正确采样。


版本信息


%load_ext watermark
%watermark -n -u -v -iv -w

image.png

相关文章
|
10天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
127 73
|
13天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
61 21
|
15天前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
57 23
|
14天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费模式预测的深度学习模型
使用Python实现智能食品消费模式预测的深度学习模型
40 2
|
API 网络架构 Python
python进行动物识别
python进行动物识别
|
21天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
20天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
8天前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
101 80
|
27天前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
134 59
|
7天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
34 2