【视频】R语言LDA线性判别、QDA二次判别分析分类葡萄酒品质数据|数据分享(上)

简介: 【视频】R语言LDA线性判别、QDA二次判别分析分类葡萄酒品质数据|数据分享

全文链接:https://tecdat.cn/?p=33031

分析师:Donglei Niu


判别分析(Discriminant analysis)是一种统计分析方法,旨在通过将一组对象(例如观察数据)分类到已知类别的组中,来发现不同组之间的差异(点击文末“阅读原文”获取完整代码数据)。


什么是判别分析


判别分析有两种主要形式:线性判别分析(LDA)和二次判别分析(QDA)。LDA假设每个类别的协方差矩阵相同,并寻找最优的判别方向来最大化类别之间的距离。QDA假设每个类别的协方差矩阵都不同,并寻找最优的判别方向来最大化类别之间的距离,同时也考虑了每个类别的协方差矩阵。


线性判别分析(LDA)


当我们有一个由n个样本和p 个特征组成的数据集时,LDA的目标是找到一个线性变换,将数据从p维空间映射到k维空间(k


线性判别分析的数学原理


image.png

目标函数


image.png

将上面的公式化简,得到:

image.png

我们最终可以目标函数为

image.png

二次判别分析(QDA)


QDA (Quadratic Discriminant Analysis)是一种有监督的机器学习算法,用于分类问题。它是 LDA (Linear Discriminant Analysis,线性判别分析)的一种扩展形式,与LDA类似,QDA 也是一种基于贝叶斯决策理论的分类器。与LDA不同的是,QDA假设每个类别的协方差矩阵不相同,因此在分类时使用的决策边界是二次曲线。


点击标题查阅往期内容


数据分享|R语言逻辑回归、线性判别分析LDA、GAM、MARS、KNN、QDA、决策树、随机森林、SVM分类葡萄酒交叉验证ROC


01

image.png

02

image.png

03

image.png

04

image.png

R语言实例介绍


数据包含有关葡萄牙“Vinho Verde”葡萄酒的信息(查看文末了解数据免费获取方式)。该数据集有1599个观测值和12个变量,分别是固定酸度、挥发性酸度、柠檬酸、残糖、氯化物、游离二氧化硫、总二氧化硫、密度、pH值、硫酸盐、酒精和质量。固定酸度、挥发性酸度、柠檬酸、残糖、氯化物、游离二氧化硫、总二氧化硫、密度、pH、硫酸盐和酒精是自变量并且是连续的。质量是因变量,根据 0 到 10 的分数来衡量。


探索性分析


总共有 855 款葡萄酒被归类为“好”品质,744 款葡萄酒被归类为“差”品质。固定酸度、挥发性酸度、柠檬酸、氯化物、游离二氧化硫、总二氧化硫、密度、硫酸盐和酒精度与葡萄酒质量显着相关( t 检验的 P 值 < 0.05),这表明了重要的预测因子。我们还构建了密度图来探索 11 个连续变量在“差”和“好”葡萄酒质量上的分布。从图中可以看出,品质优良的葡萄酒在PH方面没有差异,而不同类型的葡萄酒在其他变量上存在差异,这与t检验结果一致。

na.oit() %>
muate(qal= ase_hen(ality>5 ~good", quaity <=5 ~ "poor")) %>%
muate(qua= s.fatrqual)) %>%
dpeme1 <- rsparentTme(trans = .4)
plot = "density", pch = "|",
auto.key = list(columns = 2))

image.png

图 1. 葡萄酒品质和预测特征之间的描述图。

表 1. 优质和劣质葡萄酒的基本特征。

# 在表1中创建一个我们想要的变量
b1 <- CeatTableOe(vars  litars, straa = ’qual’ da wine
tab

image.png

模型


我们随机选择 70% 的观测值作为训练数据,其余的作为测试数据。所有 11 个预测变量都被纳入分析。我们使用线性方法、非线性方法、树方法和支持向量机来预测葡萄酒质量的分类。对于线性方法,我们训练(惩罚)逻辑回归模型和线性判别分析(LDA)。逻辑回归的假设包括相互独立的观察结果以及自变量和对数几率的线性关系。LDA 和 QDA 假设具有正态分布的特征,即预测变量对于“好”和“差”的葡萄酒质量都是正态分布的。对于非线性模型,我们进行了广义加性模型(GAM)、多元自适应回归样条(MARS)、KNN模型和二次判别分析(QDA)。对于树模型,我们进行了分类树和随机森林模型。还执行了具有线性和径向内核的 SVM。我们计算了模型选择的 ROC 和准确度,并调查了变量的重要性。10 折交叉验证 (CV) 用于所有模型。


inTrai <- cateatPariti(y  winequal, p = 0.7, lit =FASE)
traiData <- wine[inexTr, 
teDt <wi[-idxTrain,]

线性模型 多元逻辑回归显示,在 11 个预测因子中,挥发性酸度、柠檬酸、游离二氧化硫、总二氧化硫、硫酸盐和酒精与葡萄酒质量显着相关(P 值 < 0.05),解释了总方差的 25.1%。酒质。将该模型应用于测试数据时,准确度为 0.75(95%CI:0.71-0.79),ROC 为 0.818,表明数据拟合较好。在进行惩罚性逻辑回归时,我们发现最大化ROC时,最佳调优参数为alpha=1和lambda=0.00086,准确度为0.75(95%CI:0.71-0.79),ROC也为0.818。由于 lambda 接近于零且 ROC 与逻辑回归模型相同,因此惩罚相对较小,

但是,由于逻辑回归要求自变量之间存在很少或没有多重共线性,因此模型可能会受到 11 个预测变量之间的共线性(如果有的话)的干扰。至于LDA,将模型应用于测试数据时,ROC为0.819,准确率为0.762(95%CI:0.72-0.80)。预测葡萄酒品质的最重要变量是酒精度、挥发性酸度和硫酸盐。与逻辑回归模型相比,LDA 在满足正常假设的情况下,在样本量较小或类别分离良好的情况下更有帮助。

### 逻辑回归
cl - tranControlmehod =cv" number  10,
summayFunio = TRUE)
set.seed(1)
moel.gl<- train(x = tainDaa %>% dpyr::selct(-ual),
y = trainDaa$qual
metod "glm",
metic = OC",
tContrl = crl
# 检查预测因素的重要性
summary(odel.m)

image.png

# 建立混淆矩阵
tetred.prb <- rdct(mod.gl, newdat = tstDat
tye = "rob
test.ped <- rep("good", length(pred.pr
confusionMatrix(data = as.factor(test.pred),

image.png

image.png

# 绘制测试ROC图
oc.l <- roc(testa$al, es.pr.rob$god)

image.png

点击标题查阅往期内容


R语言梯度提升机 GBM、支持向量机SVM、正则判别分析RDA模型训练、参数调优化和性能比较可视化分析声纳数据


01

image.png

02

image.png

03

image.png

04

image.png

## 测试误差和训练误差
er.st. <- mean(tett$qul!= tt.pred)
tranped.obgl <-pric(moel.lmnewda= taiDaa,
type = "rob
moe.ln <-tai(xtraDa %>% dlyr:seec-qal),
y = traD
methd = "met",
tueGid = lGrid,
mtc = "RO",
trontrol  ctl)
plotodel.gl, xTras =uction() lg(x)

image.png

#选择最佳参数
mol.mn$bestune

image.png

# 混淆矩阵
tes.red2 <- rp"good" ngth(test.ed.prob2$good))
tst.red2[tespre.prob2$good < 0.5] <- "poor
conuionMatridata = as.fcto(test.prd2),

image.png

image.png

image.png

image.png

image.png


【视频】R语言LDA线性判别、QDA二次判别分析分类葡萄酒品质数据|数据分享(下):https://developer.aliyun.com/article/1497237


相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
25天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
42 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
69 3
|
6月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
|
6月前
利用R语言进行典型相关分析实战
利用R语言进行典型相关分析实战

热门文章

最新文章