R语言分位数回归、最小二乘回归OLS北京市GDP影响因素可视化分析

简介: R语言分位数回归、最小二乘回归OLS北京市GDP影响因素可视化分析

全文链接:http://tecdat.cn/?p=32372


对于影响北京市GDP 因素分析常用的方法是最小二乘回归。【1】但最小二乘有自身的缺陷,该方法要求较高,例如许多观测数据很难满足全部假设条件点击文末“阅读原文”获取完整代码数据


相比普通最小二乘法只能描述协变量对因变量条件均值变化的影响,分位数回归能精确地描述协变量对于因变量的变化范围和分布形状的影响。【2】随着计算机技术的不断突破,分位数回归软件包现已是主流统计软件R、SAS等中的座上客了,分位数回归也就自然而然地成为经济、医学、教育等领域的常用分析工具。【3】

客户主要研究是先利用分位数回归研究收敛性,然后和最小二乘做个比较。


研究意义


作为一种精确地描述自变量对于因变量的变化范围以及条件分布影响的统计方法,分位数回归的概念最早由Koenker和Basset(t1978)【4】提出。借助Laplace(1818)提出的最小绝对残差估计思想,他们针对最小二乘回归的某些缺陷,创建了线性分位数回归理论。Bassett(1986)【5】、Powell(1986)【6】和Chernozhuko(2002)【7】等人在此基础上进行了深入的研究,陆续解决了分位数回归的线性假设检验、异方差的稳健性检验、估计量的一致性和线性规划解法等应用方面的难题,使其成为了近几十年来发展较快、应用广泛的回归模型方法。分位数回归可以提供不同分位点处的估计结果,因此可以对因变量的整个分配情况作出更为清楚的阐释。【8】不同分位数下的参数估计量往往也不同,这就表明同样的影响因素对处在不同水平的研究对象的作用大小是不同的。特别是在研究对象的分布呈现异质性,如不对称,截断性等特征时,这一方法往往能够提供更为详尽的信息,具有明显的优势。【9】


文献综述


分位数回归是对以古典条件均值模型为基础的最小二乘法的延伸,它用几个分位函数来估计整体模型。分位数回归更能精确地描述自变量X对于因变量Y的变化范围以及条件分布形状的影响。分位数回归能够捕捉分布的尾部特征,当自变量对不同部分的因变量的分布产生不同的影响时。【10】

对于分位数回归模型,则可采取线性规划法(LP)估计其最小加权绝对偏差,从而得到解释变量的回归系数,可表示如下:

求解得:


研究的基本内容,拟解决的主要问题


研究的主要内容:

1.   对北京市的GDP、投资、消费等增长率进行统计;

2.   建立分位数回归模型;

3.   讨论模型的稳健性、处理数据异质性、各种收敛性;

4.   针对不同的收敛性进行分析和比较;

5.   通过与最小二乘法的对比研究其优势。


研究步骤

1.      搜集北京市近二十年经济增长等数据;

2.      学习并了解分位数回归分析问题的研究背景及应用;

3.      建立分位数回归模型;

4.      利用模型与统计软件进行计算,观察其特性;

5.      与最小二乘法进行比较,得出结论。


查看数据



读取数据


head(data)


σ收敛的检验


从变异系数的变化趋势来看,在06年以后,波动趋势变小,因此参数逐渐收敛。


β-收敛的分位数回归分析


ggplot(dat, aes(x,y)) + geom_point() + geom_smooth(method="lm")


建立分位数回归模型


qr1 <- rq

qr1$coefficients

与ols回归线段作比较


summary(OLS)

OLS(普通二乘回归)


上图是普通二乘回归的拟合图,从结果来看大部分点被回归预测的置信区间所覆盖。然后有少量点在置信区间之外。

分位数回归拟合直线

点击标题查阅往期内容


贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据


01

02

03

04

分位数回归图


从分位数回归的结果来看,所有数据均被分位数回归模型的预测区间所覆盖。因此模型比普通二乘更好。

上面的图为分位数回归的回归系数变化趋势图,从结果来看居民消费水平的相关影响逐渐变化且从负相关变为正相关,说明有正向的影响, 社会投资从正相关逐渐变成负相关,说明有负向的影响,进出口总额从负相关逐渐变成正相关,说明有正向的影响。


参考文献


[1]刘丽华,刘尧. 基于回归分析的人均GDP 影响因素研究[J] .经济研究导刊. 2013 ( 7) .

[2]沈冰. 基于面板数据的分位数回归分析——浙江省GDP的影响因素[J]. 财经纵览_财政金融 (2015年10期).

[3]李育安. 分位数回归及应用简介[J]. 统计与信息论坛 第21卷第3期 (006年5月).

[4]Koenker, Bassett. Regression Quantiles[J]. Econometrica, 1978, (46).

[5]Bassett , Koenker. Strong Consistency of Regression Quantiles and   Related Empirical Processes[J]. Econometric Theory , 1986, (2).

[6]Powell , James L. Censored Regression Quantiles[J].Journal of Econo-metrics, 1986, (32).

[7]Hong H , Chernozhukov V. Three-Step Censored Quantile Regression and Extramarital Affairs[J ] . Journal of the American Statistical Asso-ciation, 2002, (97).

[8]李群峰.  基于分位数回归的面板数据模型估计方法[J]. 统计与决策. 2011(17)

[9]黄蓓、范悍彪,宋峰. 中国地区经济增长收敛性分位数回归分析[J]. 安徽财经大学

[10]姜成飞. 分位数回归方法综述[J]. 科技信息(2013年25期)

相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
3月前
|
数据可视化 数据挖掘 数据处理
R语言高级可视化技巧:使用Plotly与Shiny制作互动图表
【8月更文挑战第30天】通过使用`plotly`和`shiny`,我们可以轻松地创建高度互动的数据可视化图表。这不仅增强了图表的表现力,还提高了用户与数据的交互性,使得数据探索变得更加直观和高效。本文仅介绍了基本的使用方法,`plotly`和`shiny`还提供了更多高级功能和自定义选项,等待你去探索和发现。希望这篇文章能帮助你掌握使用`plotly`和`shiny`制作互动图表的技巧,并在你的数据分析和可视化工作中发挥更大的作用。
|
5天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
20 3
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
数据可视化
R语言可视化设计原则:打造吸引力十足的数据可视化
【8月更文挑战第30天】R语言可视化设计是一个综合性的过程,需要综合运用多个设计原则来创作出吸引力十足的作品。通过明确目标、选择合适的图表类型、合理运用色彩与视觉层次、明确标注与引导视线以及引入互动性与动态效果等原则的应用,你可以显著提升你的数据可视化作品的吸引力和实用性。希望本文能为你提供一些有益的启示和帮助。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为

热门文章

最新文章