R语言指数平滑预测法分析南京出租车打车软件空载率时间序列补贴政策可行性

简介: R语言指数平滑预测法分析南京出租车打车软件空载率时间序列补贴政策可行性

报告链接:http://tecdat.cn/?p=32161


本文通过建立空载率的数学模型,帮助客户来分析出租车的空载率,从而对出租车补贴政策能否提高高峰期的实载率,缓解打车难问题进行了说明点击文末“阅读原文”获取完整代码数据


分析思路


1.利用这么多天的数据,按照算法先算出每天的日平今年空载率,绘制成曲线

2 利用一次平滑预测模型算出这么多天的预测日平均空载率,其中的平滑常数分别带入我假设的那三种数值,求出预测和实际均方差,最后取均方差最小的那个对应的平滑常数为我们所要的。

3.利用二次平滑指数预测模型,预测4月25日至5月31日的日平均空载率,绘制成曲线(初始值取4月23日的实际日平均空载率,平滑常数为2中所要的那个)

选择南京市的三个地点:鼓楼公园,四牌楼,玄武湖公园,因为距离远近,交通状况都差不多,以4月1日到4月30日每天测量这三个地点的打车需求量,出租车总数。


数据


数据以滴滴平台获得:


分析方法


以鼓楼公园为例:

则4月1日的空载率为:

注:不考虑拼车状况,假设一辆出租车只能接一单。

以此类推,4月2日,4月3日,4月4日…4月30日空载率分别为:

利用一次平滑指数公式:

如:4月1日的预测空载率为k,则4月2日的预测空载率为

我们采用二次平滑指数预测的算法来预测短期之内,不受季节因素影响的空载率。

二次平滑指数预测模型:公式:


求空载率


kongzailv=function(datat){  
   sum(as.numeric(datat[,2]))/sum(as.numeric(datat[,1]))  
}


地区:鼓楼公园


for(i  in 1:27){  
  datat=data[((i-1)*4+1):(i*4),3:4]  
  kongzailvdata[i]=kongzailv(datat)


设置alpha参数为0.3


alpha <- 0.3


参看模型参数



计算均方差值


RMSE1=mean((model$fitted-model$x)^2)


设置alpha参数为0.5


alpha <- 0.5


设置alpha参数为0.7



找出最小的RMSE值


min(RMSE1,RMSE2,RMSE3)
[1] 0.2712489

因此 采用alpha为0.5 , 然后使用二次平滑指数预测的算法来预测短期之内,不受季节因素影响的空载率。


参看模型参数



预测数值


预测图像


点击标题查阅往期内容


杭州出租车行驶轨迹数据空间时间可视化分析


01

02

03

04



地区:四牌楼


which.min(c(RMSE1,RMSE2,RMSE3))
## [1] 3
 ###从结果看出当alpaha为0.7的时候 渠道最小的RMSE值

因此 采用alpha为0.7 ,然后使用二次平滑指数预测的算法来预测短期之内,不受季节因素影响的空载率。


参看模型参数



地区:玄武湖公园


#############################找出最小的RMSE值  
 min(RMSE1,RMSE2,RMSE3)
## [1] 0.01964692
 which.min(c(RMSE1,RMSE2,RMSE3))
## [1] 1
 ###从结果看出当alpaha为0.3的时候 渠道最小的RMSE值


参看模型参数


相关文章
|
2月前
|
机器学习/深度学习 数据挖掘 计算机视觉
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
|
2月前
|
数据采集 数据挖掘 测试技术
python、R语言ARIMA-GARCH分析南方恒生中国企业ETF基金净值时间序列分析
python、R语言ARIMA-GARCH分析南方恒生中国企业ETF基金净值时间序列分析
|
2月前
|
数据可视化
R语言汇率、股价指数与GARCH模型分析:格兰杰因果检验、脉冲响应与预测可视化
R语言汇率、股价指数与GARCH模型分析:格兰杰因果检验、脉冲响应与预测可视化
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言神经网络模型金融应用预测上证指数时间序列可视化
R语言神经网络模型金融应用预测上证指数时间序列可视化
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言软件对房屋价格预测:回归、LASSO、决策树、随机森林、GBM、神经网络和SVM可视化|数据分享
R语言软件对房屋价格预测:回归、LASSO、决策树、随机森林、GBM、神经网络和SVM可视化|数据分享
|
2月前
|
存储 数据可视化
R语言软件套保期限GARCH、VAR、OLS回归模型对沪深300金融数据可视化分析
R语言软件套保期限GARCH、VAR、OLS回归模型对沪深300金融数据可视化分析
|
2月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
2月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
2月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
|
2月前
利用R语言进行典型相关分析实战
利用R语言进行典型相关分析实战

热门文章

最新文章