数据在内存中的存储之整数存储

简介: 数据在内存中的存储之整数存储

整数在内存中的存储

整数的2进制表示方法有三种,即原码、反码和补码

三种表示方法均有符号位数值位两部分,符号位都是0表用示“正”,用1表示“负”,而最高的一位是被当做符号位,剩余的都是数值位。

正整数的原、反、补码都相同。
负整数的三种表示方法各不相同。

原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码。

反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。

补码:反码+1就得到补码。

对于整形来说:数据存放内存中其实存放的是补码。

为什么呢?

在计算机系统中,数值一律用补码来表示和存储

原因在于,使用补码,可以将符号位和数值域统⼀处理;

同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是

相同的,不需要额外的硬件电路。

 

1.1大小端字节序和字节序判断

大小端:

       其实超过一个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为大端字节序存储和小端字节序存储,下面是具体的概念:

大端(存储)模式:是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。

小端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。

上述概念需要记住,方便分辨大小端。

举一个简单整数存储例子 :

#include <stdio.h>
int main()
{
    char a = -1;//char是否有符号,取决于编译器,在这里,我们以有符号举例
    signed char b = -1;
    unsigned char c = -1;
    printf("a=%d,b=%d,c=%d", a, b, c);// -1, -1, 255
    return 0;
}

分析:(32位)

-1的原码:10000000000000000000000000000001

-1的反码:11111111111111111111111111111110

-1的补码:11111111111111111111111111111111

有符号char:

a是char类型,单位1字节,所以a在计算机中存储的二进制为11111111(发生了截断

而打印是以有符号的整型形式打印,char类型要发生整型提升

整型提升:

       有符号数:高位补符号位,直到补齐32位

       无符号数:高位补0,直到补齐32位

所以,最终a整型1提升后的补码是11111111111111111111111111111111,打印是以二进制的原码形式转换成十进制打印的 -> -1

无符号char:

首先将-1进行补码形存储。

除了整型提升不同外,其余于上述雷同。

c整型提升后的补码是 00000000000000000000000011111111, 打印是以二进制的原码形式转换成十进制打印的 -> 255

假设下面以小端字节序存储:

#include <stdio.h>
int main()
{
    int a[4] = { 1, 2, 3, 4 };
    int *ptr1 = (int *)(&a + 1);
    int *ptr2 = (int *)((int)a + 1);
    printf("%x,%x", ptr1[-1], *ptr2);//4,2000000
    return 0;
}

分析:

a 存储在内存中为(十六进制形式下):

01000000  02000000  03000000  04000000

  • int *ptr1 = (int *)(&a + 1); 这行代码将ptr1指向数组a之后的内存位置。由于&a给出的是整个数组的地址,加上1会使指针跳过整个数组,指向数组之后的内存位置。ptr1[-1]实际上是访问这个新位置之前的内存单元,也就是数组a的最后一个元素,即4。
  • int *ptr2 = (int *)((int)a + 1);假设a的首元素地址为0x0012ff40, 这里首先将数组a的地址转换为整型(通过(int)a),然后加1,a的值为0x0012ff41。之后,又将整型 a 强制类型转换为 int * 。由于a是一个指向整型的指针,此时,ptr2指向第一个元素的第二个字节。ptr2解引用,从第一个元素的第二个字节开始数4个字节,作为一个元素,即00000002以小端字节序存储:0x02000000
  • printf("%x,%x", ptr1[-1], *ptr2);这行代码以十六进制格式打印出ptr1[-1]和*ptr2的值。


目录
相关文章
|
9天前
|
监控 算法 应用服务中间件
“四两拨千斤” —— 1.2MB 数据如何吃掉 10GB 内存
一个特殊请求引发服务器内存用量暴涨进而导致进程 OOM 的惨案。
|
8天前
|
存储 C语言
数据在内存中的存储方式
本文介绍了计算机中整数和浮点数的存储方式,包括整数的原码、反码、补码,以及浮点数的IEEE754标准存储格式。同时,探讨了大小端字节序的概念及其判断方法,通过实例代码展示了这些概念的实际应用。
18 1
|
13天前
|
存储
共用体在内存中如何存储数据
共用体(Union)在内存中为所有成员分配同一段内存空间,大小等于最大成员所需的空间。这意味着所有成员共享同一块内存,但同一时间只能存储其中一个成员的数据,无法同时保存多个成员的值。
|
15天前
|
监控 Java easyexcel
面试官:POI大量数据读取内存溢出?如何解决?
【10月更文挑战第14天】 在处理大量数据时,使用Apache POI库读取Excel文件可能会导致内存溢出的问题。这是因为POI在读取Excel文件时,会将整个文档加载到内存中,如果文件过大,就会消耗大量内存。以下是一些解决这一问题的策略:
43 1
|
17天前
|
存储 弹性计算 算法
前端大模型应用笔记(四):如何在资源受限例如1核和1G内存的端侧或ECS上运行一个合适的向量存储库及如何优化
本文探讨了在资源受限的嵌入式设备(如1核处理器和1GB内存)上实现高效向量存储和检索的方法,旨在支持端侧大模型应用。文章分析了Annoy、HNSWLib、NMSLib、FLANN、VP-Trees和Lshbox等向量存储库的特点与适用场景,推荐Annoy作为多数情况下的首选方案,并提出了数据预处理、索引优化、查询优化等策略以提升性能。通过这些方法,即使在资源受限的环境中也能实现高效的向量检索。
|
18天前
|
缓存 安全 Java
使用 Java 内存模型解决多线程中的数据竞争问题
【10月更文挑战第11天】在 Java 多线程编程中,数据竞争是一个常见问题。通过使用 `synchronized` 关键字、`volatile` 关键字、原子类、显式锁、避免共享可变数据、合理设计数据结构、遵循线程安全原则和使用线程池等方法,可以有效解决数据竞争问题,确保程序的正确性和稳定性。
31 2
|
4月前
|
存储 分布式计算 Hadoop
HadoopCPU、内存、存储限制
【7月更文挑战第13天】
269 14
|
3月前
|
存储 编译器 C语言
【C语言篇】数据在内存中的存储(超详细)
浮点数就采⽤下⾯的规则表⽰,即指数E的真实值加上127(或1023),再将有效数字M去掉整数部分的1。
317 0
|
22天前
|
存储 编译器
数据在内存中的存储
数据在内存中的存储
35 4
|
20天前
|
存储 Java
JVM知识体系学习四:排序规范(happens-before原则)、对象创建过程、对象的内存中存储布局、对象的大小、对象头内容、对象如何定位、对象如何分配
这篇文章详细地介绍了Java对象的创建过程、内存布局、对象头的MarkWord、对象的定位方式以及对象的分配策略,并深入探讨了happens-before原则以确保多线程环境下的正确同步。
41 0
JVM知识体系学习四:排序规范(happens-before原则)、对象创建过程、对象的内存中存储布局、对象的大小、对象头内容、对象如何定位、对象如何分配