BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:
- Key本身的数据量过大:一个String类型的Key,它的值为5 MB
- Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个
- Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB
BigKey的危害
- 网络阻塞
对BigKey执行读请求时,少量的QPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢
- 数据倾斜
BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡
- Redis阻塞
对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞
- CPU压力
对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本机其它应用
工具类扫描出 bigKey
package com.icsomserver.business.test; import org.junit.jupiter.api.AfterEach; import org.junit.jupiter.api.BeforeEach; import org.junit.jupiter.api.Test; import redis.clients.jedis.Jedis; import redis.clients.jedis.ScanResult; import java.util.List; public class JedisTest { private Jedis jedis; @BeforeEach void setUp() { // 1.建立连接 jedis = new Jedis("127.0.0.1", 6379); // 2.设置密码 //jedis.auth("123321"); // 3.选择库 jedis.select(0); } final static int STR_MAX_LEN = 10 * 1024; final static int HASH_MAX_LEN = 500; @Test void testScan() { int maxLen = 0; long len = 0; int cursor = 0; do { // 扫描并获取一部分key ScanResult<String> result = jedis.scan(cursor); // 记录cursor cursor = result.getCursor(); List<String> list = result.getResult(); if (list == null || list.isEmpty()) { break; } // 遍历 for (String key : list) { // 判断key的类型 String type = jedis.type(key); switch (type) { case "string": len = jedis.strlen(key); maxLen = STR_MAX_LEN; break; case "hash": len = jedis.hlen(key); maxLen = HASH_MAX_LEN; break; case "list": len = jedis.llen(key); maxLen = HASH_MAX_LEN; break; case "set": len = jedis.scard(key); maxLen = HASH_MAX_LEN; break; case "zset": len = jedis.zcard(key); maxLen = HASH_MAX_LEN; break; default: break; } if (len >= maxLen) { System.out.printf("Found big key : %s, type: %s, length or size: %d %n", key, type, len); } } } while (cursor != 0); } @AfterEach void tearDown() { if (jedis != null) { jedis.close(); } } }
需要引入的 pom
<!--单元测试--> <dependency> <groupId>org.junit.jupiter</groupId> <artifactId>junit-jupiter</artifactId> <version>5.7.1</version> </dependency>
如何删除 BigKey
BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题。
redis 3.0 及以下版本
如果是集合类型,则遍历BigKey的元素,先逐个删除子元素,最后删除BigKey
Redis 4.0以后
Redis在4.0后提供了异步删除的命令:unlink