数据分享|R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病

简介: 数据分享|R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病

原文链接:http://tecdat.cn/?p=23061


数据集信息:


这个数据集查看文末了解数据获取方式可以追溯到1988年,由四个数据库组成。克利夫兰、匈牙利、瑞士和长滩。"目标 "字段是指病人是否有心脏病。它的数值为整数,0=无病,1=有病。


目标:


主要目的是预测给定的人是否有心脏病,借助于几个因素,如年龄、胆固醇水平、胸痛类型等。

我们在这个问题上使用的算法是:

  • 二元逻辑回归
  • Naive Bayes算法
  • 决策树
  • 随机森林


数据集的描述:


该数据有303个观察值和14个变量。每个观察值都包含关于个人的以下信息。

  • 年龄:- 个人的年龄,以年为单位
  • sex:- 性别(1=男性;0=女性)
  • cp - 胸痛类型(1=典型心绞痛;2=非典型心绞痛;3=非心绞痛;4=无症状)。
  • trestbps--静息血压
  • chol - 血清胆固醇,单位:mg/dl
  • fbs - 空腹血糖水平>120 mg/dl(1=真;0=假)
  • restecg - 静息心电图结果(0=正常;1=有ST-T;2=肥大)
  • thalach - 达到的最大心率
  • exang - 运动诱发的心绞痛(1=是;0=否)
  • oldpeak - 相对于静止状态,运动诱发的ST压低
  • slope - 运动时ST段峰值的斜率(1=上斜;2=平坦;3=下斜)
  • ca - 主要血管的数量(0-4),由Flourosopy着色
  • 地中海贫血症--地中海贫血症是一种遗传性血液疾病,会影响身体产生血红蛋白和红细胞的能力。1=正常;2=固定缺陷;3=可逆转缺陷
  • 目标--预测属性--心脏疾病的诊断(血管造影疾病状态)(值0=<50%直径狭窄;值1=>50%直径狭窄)

在Rstudio中加载数据

heart<-read.csv("heart.csv",header = T)

header = T意味着给定的数据有自己的标题,或者换句话说,第一个观测值也被考虑用于预测。

head(heart)

当我们想查看和检查数据的前六个观察点时,我们使用head函数。

tail(heart)

显示的是我们数据中最后面的六个观察点

colSums(is.na(heart))

这个函数是用来检查我们的数据是否包含任何NA值。

如果没有发现NA,我们就可以继续前进,否则我们就必须在之前删除NA。


检查我们的数据结构

str(heart)

查看我们的数据摘要

summary(heart)

通过观察以上的总结,我们可以说以下几点

  • 性别不是连续变量,因为根据我们的描述,它可以是男性或女性。因此,我们必须将性别这个变量名称从整数转换为因子。
  • cp不能成为连续变量,因为它是胸痛的类型。由于它是胸痛的类型,我们必须将变量cp转换为因子。
  • fbs不能是连续变量或整数,因为它显示血糖水平是否低于120mg/dl。
  • restecg是因子,因为它是心电图结果的类型。它不能是整数。所以,我们要把它转换为因子和标签。
  • 根据数据集的描述,exang应该是因子。心绞痛发生或不发生。因此,将该变量转换为因子。
  • 斜率不能是整数,因为它是在心电图中观察到的斜率类型。因此,我们将变量转换为因子。
  • 根据数据集的描述,ca不是整数。因此,我们要将该变量转换为因子。
  • thal不是整数,因为它是地中海贫血的类型。因此,我们将变量转换为因子。
  • 目标是预测变量,告诉我们这个人是否有心脏病。因此,我们将该变量转换为因子,并为其贴上标签。

根据上述考虑,我们对变量做了一些变化

#例如
sex<-as.factor(sex)
levels(sex)<-c("Female","Male")

检查上述变化是否执行成功

str(heart)

summary(heart)

EDA


EDA是探索性数据分析(Exploratory Data Analysis)的缩写,它是一种数据分析的方法/哲学,采用各种技术(主要是图形技术)来深入了解数据集。

对于图形表示,我们需要库 "ggplot2"

library(ggplot2)
ggplot(heart,aes(x=age,fill=target,color=target)) + geom_histogram(binwidth = 1,color="black") + labs(x = "Age",y = "Frequency", title = "Heart Disease w.r.t. Age")

我们可以得出结论,与60岁以上的人相比,40至60岁的人患心脏病的概率最高。

table <- table(cp)
pie(table)

我们可以得出结论,在所有类型的胸痛中,在个人身上观察到的大多数是典型的胸痛类型,然后是非心绞痛。


点击标题查阅往期内容


R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测


01

02

03

04

执行机器学习算法


Logistic回归


首先,我们将数据集分为训练数据(75%)和测试数据(25%)。

set.seed(100) 
#100用于控制抽样的permutation为100. 
index<-sample(nrow(heart),0.75*nrow(heart))

在训练数据上生成模型,然后用测试数据验证模型。

glm(family = "binomial")
# family = " 二项式 "意味着只包含两个结果。

为了检查我们的模型是如何生成的,我们需要计算预测分数和建立混淆矩阵来了解模型的准确性。

pred<-fitted(blr)
# 拟合只能用于获得生成模型的数据的预测分数。

我们可以看到,预测的分数是患心脏病的概率。但我们必须找到一个适当的分界点,从这个分界点可以很容易地区分是否患有心脏病。

为此,我们需要ROC曲线,这是一个显示分类模型在所有分类阈值下的性能的图形。它将使我们能够采取适当的临界值。

pred<-prediction(train$pred,train$target)
perf<-performance(pred,"tpr","fpr")
plot(perf,colorize = T,print.cutoffs.at = seq(0.1,by = 0.1))

通过使用ROC曲线,我们可以观察到0.6具有更好的敏感性和特异性,因此我们选择0.6作为区分的分界点。

pred1<-ifelse(pred<0.6,"No","Yes")

# 训练数据的准确性
acc_tr

从训练数据的混淆矩阵中,我们知道模型有88.55%的准确性。

现在在测试数据上验证该模型

predict(type = "response")
## type = "response "是用来获得患有心脏病的概率的结果。
head(test)

我们知道,对于训练数据来说,临界点是0.6。同样地,测试数据也会有相同的临界点。

confusionMatrix((pred1),target)

#测试数据的准确性.

检查我们的预测值有多少位于曲线内

auc@y.values

我们可以得出结论,我们的准确率为81.58%,90.26%的预测值位于曲线之下。同时,我们的错误分类率为18.42%。


Naive Bayes算法


在执行Naive Bayes算法之前,需要删除我们在执行BLR时添加的额外预测列。

#naivebayes模型
nB(target~.)

用训练数据检查模型,并创建其混淆矩阵,来了解模型的准确程度。

predict(train)
confMat(pred,target)

我们可以说,贝叶斯算法对训练数据的准确率为85.46%。

现在,通过预测和创建混淆矩阵来验证测试数据的模型。

Matrix(pred,target)

我们可以得出结论,在Naive Bayes算法的帮助下生成的模型准确率为78.95%,或者我们也可以说Naive Bayes算法的错误分类率为21.05%。


决策树


在实施决策树之前,我们需要删除我们在执行Naive Bayes算法时添加的额外列。

train$pred<-NULL

rpart代表递归分区和回归树

当自变量和因变量都是连续的或分类的时候,就会用到rpart。

rpart会自动检测是否要根据因变量进行回归或分类。


实施决策树

plot(tree)

在决策树的帮助下,我们可以说所有变量中最重要的是CP、CA、THAL、Oldpeak。

让我们用测试数据来验证这个模型,并找出模型的准确性。

conMat(pred,targ)

我们可以说,决策树的准确率为76.32%,或者说它的错误分类率为23.68%。


随机森林


在执行随机森林之前,我们需要删除我们在执行决策树时添加的额外预测列。

test$pred<-NULL

在随机森林中,我们不需要将数据分成训练数据和测试数据,我们直接在整个数据上生成模型。为了生成模型,我们需要使用随机森林库

# Set.seed通过限制permutation来控制随机性。
set.seed(100)
model_rf<-randomForest(target~.,data = heart)
model_rf

在图上绘制出随机森林与误差的关系。

plot(model_rf)

红线代表没有心脏病的MCR,绿线代表有心脏病的MCR,黑线代表总体MCR或OOB误差。总体误差率是我们感兴趣的,结果不错。


结论


在进行了各种分类技术并考虑到它们的准确性后,我们可以得出结论,所有模型的准确性都在76%到84%之间。其中,随机森林的准确率略高,为83.5%。

相关文章
|
3天前
|
机器学习/深度学习 存储 人工智能
算法金 | 使用随机森林获取特征重要性
**随机森林算法简介**:集成多个决策树提升性能,常用于各类任务。在葡萄酒分类项目中,使用`RandomForestClassifier`实现模型,100棵树,得分100%。特征重要性显示了哪些化学成分影响最大。通过特征选择保持高准确性,证明了有效特征选择的重要性。7个关键特征中脯氨酸和酒精含量最重要。简洁高效,适用于特征工程。[链接指向知识星球]
29 5
|
2天前
|
机器学习/深度学习 数据采集 存储
算法金 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost 算法大全
**摘要:** 这篇文章介绍了决策树作为一种机器学习算法,用于分类和回归问题,通过一系列特征测试将复杂决策过程简化。文章详细阐述了决策树的定义、构建方法、剪枝优化技术,以及优缺点。接着,文章讨论了集成学习,包括Bagging、Boosting和随机森林等方法,解释了它们的工作原理、优缺点以及如何通过结合多个模型提高性能和泛化能力。文中特别提到了随机森林和GBDT(XGBoost)作为集成方法的实例,强调了它们在处理复杂数据和防止过拟合方面的优势。最后,文章提供了选择集成学习算法的指南,考虑了数据特性、模型性能、计算资源和过拟合风险等因素。
6 0
算法金 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost 算法大全
|
10天前
|
算法 数据可视化 Python
Python中的决策树算法探索
Python中的决策树算法探索
|
16天前
|
机器学习/深度学习 算法 前端开发
决策树与随机森林算法在分类问题中的应用
本文探讨了决策树和随机森林两种监督学习算法,它们在分类任务中表现出强大的解释性和预测能力。决策树通过特征测试进行分类,构建涉及特征选择、树生成和剪枝。随机森林是集成学习方法,通过构建多棵决策树并汇总预测结果,防止过拟合。文中提供了Python代码示例,展示如何使用sklearn构建和应用这些模型,并讨论了参数调优和模型评估方法,如交叉验证和混淆矩阵。最后,强调了在实际问题中灵活选择和调整模型参数的重要性。
41 4
|
16天前
|
存储 机器学习/深度学习 算法
使用决策树算法预测隐形眼镜类型
使用决策树算法预测隐形眼镜类型
24 2
|
16天前
|
存储 算法 Python
决策树算法
决策树算法
13 2
|
8天前
|
机器学习/深度学习 算法 数据可视化
决策树算法:从原理到实践的深度解析
决策树算法:从原理到实践的深度解析
13 0
|
30天前
|
机器学习/深度学习 算法 API
【机器学习】Python中的决策树算法探索
决策树作为机器学习中的一种基础且强大的算法,因其易于理解和实现、能够处理分类和回归任务的特性而广受欢迎。本文旨在深入浅出地介绍决策树算法的基本原理,并通过Python编程语言实践其应用,帮助读者掌握如何利用Python构建及优化决策树模型。本文预计分为以下几个部分:决策树基础理论、Python中实现决策树的库介绍、实战案例分析、模型评估与调优方法,以及决策树算法的局限性与未来展望。
31 0
|
1月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
1月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为

热门文章

最新文章