R语言和Python对copula模型Gaussian、t、Clayton 和Gumbel族可视化理论概念和文献计量使用情况

简介: R语言和Python对copula模型Gaussian、t、Clayton 和Gumbel族可视化理论概念和文献计量使用情况

原文链接:http://tecdat.cn/?p=27240 


本文包含一些直观的示例来说明 copula 理论的核心概念。以下是脚本及其各自用途的简短列表:

  • 首先演示如何使用高斯 copula 来模拟具有任意边际分布的两个相关随机变量。它使用基本的 R 代码实现了这一点,因此无需使用 copula 包来揭开这个概念的神秘面纱。
library(MASS) # 用于从多元法线绘制
set.seed(206) # 确保可重复性
d <- 2 # 随机变量的数量
n <- 10000 # 样本数
v <- pnorm(pq) # 概率积分变换
################################################# #####
x <- qt(v\[, 1\], df = 7) # 用学生 t 的分位数函数变换 (smirnov) 第一个 rv,其中 nu = 7y <- qt(v\[, 2\], df = 15) # 用 nu = 15 的学生 t 的分位数函数变换 (smirnov) 第二个 rv
pair.panels(xy, rug = FALSE, cex.cor = 0.7, hist.col = "dodgerblue4") # 绘图


  • Python 脚本,可在双变量设置中生成三个基本 copula(反单调性、独立性和同调性)的 3D 可视化。反单调性 copula 构成了 Fréchet-Hoeffding 下界,而同调性 copula 构成了 Fréchet-Hoeffding 上界。
### 定义 3 个基本的 Copula 函数 ###
Z = np.maximum(X + Y - 1, 0)
Z = X * Y
定义上限(X,Y):
Z = np.minimum(X, Y)
### 创建数据点###
X, Y = np.meshgrid(x, y) # 创建“基础网格”
Z = upperBound(X, Y) # z 轴上的点
### 绘图###
plot_surface(X, Y, Z1


  • 加强您对 copula 类和族的理解。通过使用散点图,我们强调了 Gaussian、t、Clayton 和 Gumbel copula 之间的差异。


点击标题查阅往期内容


R语言ARMA GARCH COPULA模型拟合股票收益率时间序列和模拟可视化


01

02

03

04



# 清理
set.seed(206) # 确保可重复性# 创建 copula 对象 normalCopula(param = 0.7, dim = 2)# 模拟n <- rCopula(10000, normCop)# 绘图par(mfrow = c(2, 2))
plot(R\[, 1\], R\[, 2\], pch='.', col='dodgerblue4', xlab = "", ylab = "",)


  • 绘制了“copula”的文献计量分析使用情况。

set.seed(206) # 确保可重复性# 创建 copula 对象 normalCopula(param = 0.7, dim = 2)# 模拟n <- rCopula(10000, normCop)# 绘图par(mfrow = c(2, 2))
plot(R\[, 1\], R\[, 2\], pch='.', col='dodgerblue4', xlab = "", ylab = "",)


  • 绘制了“copula”的文献计量分析使用情况。

相关文章
|
4天前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
2天前
|
机器学习/深度学习 数据可视化 PyTorch
使用Python实现深度学习模型:变分自编码器(VAE)
使用Python实现深度学习模型:变分自编码器(VAE)
11 2
|
3天前
|
机器学习/深度学习 数据可视化 PyTorch
使用Python实现深度学习模型:生成对抗网络(GAN)
使用Python实现深度学习模型:生成对抗网络(GAN)
18 3
|
4天前
|
机器学习/深度学习 数据可视化 PyTorch
使用Python实现深度学习模型:自动编码器(Autoencoder)
使用Python实现深度学习模型:自动编码器(Autoencoder)
9 0
|
4天前
|
数据可视化 大数据 数据处理
大数据处理时的python和R语言
【5月更文挑战第5天】本文讨论了在语言Python 和R中数据处理时的框架,比如Python中的 OpenCV, Matplotlib, NumPy, Pandas, 和Seaborn。
14 1
大数据处理时的python和R语言
|
4天前
|
前端开发 JavaScript TensorFlow
如何将训练好的Python模型给JavaScript使用?
本文介绍了如何将TensorFlow模型转换为Web格式以实现浏览器中的实际应用。首先,简述了已有一个能够检测扑克牌的TensorFlow模型,目标是将其部署到Web上。接着,讲解了TensorFlow.js Converter的作用,它能将Python API创建的GraphDef模型转化为TensorFlow.js可读取的json格式,用于浏览器中的推理计算。然后,详细说明了Converter的安装、用法及不同输入输出格式,并提供了转换命令示例。最后,文中提到了模型转换后的实践步骤,包括找到导出的模型、执行转换命令以及在浏览器端部署模型的流程。
17 3
|
4天前
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
4天前
|
数据可视化 数据处理 索引
Python用GARCH对ADBL股票价格时间序列趋势滚动预测、损失、可视化分析
Python用GARCH对ADBL股票价格时间序列趋势滚动预测、损失、可视化分析
|
4天前
|
新零售 分布式计算 数据可视化
数据分享|基于Python、Hadoop零售交易数据的Spark数据处理与Echarts可视化分析
数据分享|基于Python、Hadoop零售交易数据的Spark数据处理与Echarts可视化分析
|
4天前
|
机器学习/深度学习 存储 数据可视化
数据分享|Python在Scikit-Learn可视化随机森林中的决策树分析房价数据
数据分享|Python在Scikit-Learn可视化随机森林中的决策树分析房价数据