【AI大模型应用开发】【LangChain系列】加速学习LangChain效率:源码环境安装 + 断点调试

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【AI大模型应用开发】【LangChain系列】加速学习LangChain效率:源码环境安装 + 断点调试
  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


学习一个开源项目,效率最高的还是实际将项目跑起来,然后断点,跟着一个数据流,逐渐深入。

所以,对于开源项目,进行源码环境的安装就比较重要了。本文我们来用源码安装的方式安装 LangChain。

0. 源码安装 LangChain

前面我们在 【AI大模型应用开发】【LangChain系列】0. LangChain框架介绍,实现LangChain的Hello World 中已经安装过 LangChain 了,但是那是直接安装的Python包,是无法进行断点调试和直接从我们自己的程序中跳转到源码阅读的。

建议先用 pip install langchain 安装一遍langchain包,然后再使用下面的命令单独安装个别模块的源码,这样保证安装的langchain的依赖都是完整的,部分源码,部分python包。

要想从源码安装 LangChain,需要使用 pip install -e . 命令。关于此命令的作用,我之前也写过:【Python笔记】pip intall -e命令:让你的工程直接使用开源包的源码,可断点调试,修改源码!

完整步骤如下:

(1)正常从github上下载源码到本地

git clone https://github.com/langchain-ai/langchain.git

(2)进入 langchain/libs/langchain 目录

(3)执行 pip install -e . 命令

(4)再进入到 langchain/libs/core 目录

(5)执行 pip install -e . 命令

(6)再进入到 langchain/libs/community 目录

(7)执行 pip install -e . 命令

可能遇到的问题:

类似的问题都是缺少对应的包导致的。例如上面缺少 poetry-core>=1.0.0 的包,那就用 pip install poetry-core 安装一下这个包即可。等安装完这个包之后,再重新 pip intall -e .

1. 验证是否源码安装成功

随便新建个python文件,写入以下代码:

from langchain.retrievers.web_research import WebResearchRetriever # 这里主要是为了让它能走到你打断点的地方

然后在 langchain\libs\community\langchain_community\chat_models\openai.py 的以下地方打个断点。

执行Python文件,程序会在断点处停止,表明源码安装成功:

断点处堆栈如下:

<module> (d:\GitHub\langchain\libs\community\langchain_community\chat_models\openai.py:63)
<module> (d:\GitHub\langchain\libs\community\langchain_community\chat_models\anyscale.py:15)
<module> (d:\GitHub\langchain\libs\community\langchain_community\chat_models\__init__.py:21)
<module> (d:\GitHub\langchain\libs\langchain\langchain\chains\router\multi_retrieval_qa.py:6)
<module> (d:\GitHub\langchain\libs\langchain\langchain\chains\router\__init__.py:4)
<module> (d:\GitHub\langchain\libs\langchain\langchain\chains\__init__.py:76)
<module> (d:\GitHub\langchain\libs\langchain\langchain\retrievers\document_compressors\chain_extract.py:13)
<module> (d:\GitHub\langchain\libs\langchain\langchain\retrievers\document_compressors\__init__.py:2)
<module> (d:\GitHub\langchain\libs\langchain\langchain\retrievers\contextual_compression.py:10)
<module> (d:\GitHub\langchain\libs\langchain\langchain\retrievers\__init__.py:25)
<module> (d:\GitHub\LEARN_LLM\langchain_example\web_rag copy.py:2)

大功告成。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
5天前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
80 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
21小时前
|
数据采集 人工智能 搜索推荐
SocraticLM:通过 AI 提问引导学生主动思考,中科大与科大讯飞联合推出苏格拉底式教育大模型
SocraticLM 是由中科大和科大讯飞联合开发的苏格拉底式教学大模型,通过提问引导学生主动思考,提供个性化教学,显著提升教学效果。
16 6
SocraticLM:通过 AI 提问引导学生主动思考,中科大与科大讯飞联合推出苏格拉底式教育大模型
|
6天前
|
人工智能 自然语言处理 前端开发
三大行业案例:AI大模型+Agent实践全景
本文将从AI Agent和大模型的发展背景切入,结合51Talk、哈啰出行以及B站三个各具特色的行业案例,带你一窥事件驱动架构、RAG技术、人机协作流程,以及一整套行之有效的实操方法。具体包含内容有:51Talk如何让智能客服“主动进攻”,带来约课率、出席率双提升;哈啰出行如何由Copilot模式升级为Agent模式,并应用到客服、营销策略生成等多个业务场景;B站又是如何借力大模型与RAG方法,引爆了平台的高效内容检索和强互动用户体验。
79 5
|
3天前
|
人工智能 供应链 安全
面向高效大模型推理的软硬协同加速技术 多元化 AI 硬件引入评测体系
本文介绍了AI硬件评测体系的三大核心方面:统一评测标准、平台化与工具化、多维度数据消费链路。通过标准化评测流程,涵盖硬件性能、模型推理和训练性能,确保评测结果客观透明。平台化实现资源管理与任务调度,支持大规模周期性评测;工具化则应对紧急场景,快速适配并生成报告。最后,多维度数据消费链路将评测数据结构化保存,服务于综合通用、特定业务及专业性能分析等场景,帮助用户更好地理解和使用AI硬件。
|
3天前
|
人工智能 自然语言处理 API
大模型编程(3)让 AI 帮我调接口
这是大模型编程系列第三篇,分享学习某云大模型工程师ACA认证免费课程的笔记。本文通过订机票和查天气的例子,介绍了如何利用大模型API实现函数调用,解决实际业务需求。课程内容详实,推荐感兴趣的朋友点击底部链接查看原文,完全免费。通过这种方式,AI可以主动调用接口并返回结果,极大简化了开发流程。欢迎在评论区交流实现思路。
30 1
|
6天前
|
人工智能 资源调度 调度
云上AI Infra解锁大模型创新应用
本节课程由阿里云智能集团资深技术专家王超分享,主题为AI基础设施的发展趋势。课程聚焦于AI Infra设计与Scaling Law,探讨了下一代AI基础设施的设计目标、功能升级及推理场景中的应用。主要内容包括高效支持大规模模型训练和推理、全球调度系统的设计、Rack level的Scale优化以及多租户容器化使用方式。通过这些改进,旨在提升并行效率、资源利用率及稳定性,推动AI基础设施迈向更高性能和更优调度的新阶段。
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
139 97
|
13天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
39 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
1天前
|
机器学习/深度学习 人工智能 监控
AI在交通管理系统中的应用
AI在交通管理系统中的应用
31 23