【AI大模型应用开发】【LangChain系列】5. 实战LangChain的智能体Agents模块

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【AI大模型应用开发】【LangChain系列】5. 实战LangChain的智能体Agents模块

大家好,我是【同学小张】。持续学习,持续干货输出,关注我,跟我一起学AI大模型技能。

在我前面的MetaGPT系列文章中,已经对智能体有了一个认知,重温一下:

智能体 = LLM+观察+思考+行动+记忆

  • 将大语言模型作为一个推理引擎。给定一个任务,智能体自动生成完成任务所需的步骤,执行相应动作(例如选择并调用工具),直到任务完成。

更详细的智能体相关概念可看我前面的文章:

【AI的未来 - AI Agent系列】【MetaGPT】1. AI Agent如何重构世界

本文我们来学习下LangChain中的智能体模块怎么用。

0. 从一个例子认识LangChian的Agent

下面,我们以一个Google搜索的例子来直观认识下LangChain的Agent。

0.1 Google搜索Tool

0.1.1 注册Google并获取搜索API的key

Google搜索需要借助 Serpapi 来进行实现,Serpapi 提供了 Google 搜索的 API 接口

(1)去官网:https://serpapi.com/ 注册一个账号,获取自己的key

(2)像OpenAI的key一样添加到环境变量的配置文件中。

(3)安装google检索依赖的Python包

pip install google-search-results

0.2 运行示例程序

咱们先不看LangChain的Agent的概念、接口及原理,先来一个简单的使用示例,运行起来,看下LangChain的Agent都能干什么。

  • 示例程序完整代码
import os
# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
from langchain_openai import ChatOpenAI
llm = ChatOpenAI() # 默认是gpt-3.5-turbo
# 定义 tools
from langchain.agents import load_tools
tools = load_tools(["serpapi"])
from langchain.agents import initialize_agent
from langchain.agents import AgentType
# 工具加载后都需要初始化,verbose 参数为 True,会打印全部的执行详情
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
# 运行 agent
agent.run("今天的日期是什么? 历史上的今天发生了什么大事?用中文回答")
  • 运行结果

0.3 运行结果解释

从上面运行结果可以看到此Agent的运行过程:

(1)先总结了任务和思考了步骤:检索当前日期,然后检索这个日期上发生的历史事件

(2)执行检索当前日期的步骤:Action是Search,输入是“今天的日期”

(3)得到了今天的日期:Observation的结果

(4)再一次思考:我现在已经知道了当前日期

(5)执行第二步:Action是Search,输入是“历史上的今天发生了什么大事”

(6)得到了第二步的结果

(7)再思考:知道了历史上的今天发生了什么

(8)总结输出最终回复

简单概括:思考 —> 得到结果 —> 思考 —> 得到结果 —> … —> 思考 —> 总结

到这里,相信你已经大体知道Agent是干什么的了。下面,我们拆解下Agent的实现。

1. Agent实现步骤拆解

1.1 先定义工具Tools

  • 可以是一个函数或三方 API
  • 也可以把一个 Chain 或者 Agent 的 run()作为一个 Tool

在上面的例子中,我们使用了官方内置的Tool:serpapi,这也是可以自己定义的。例如下面的代码,自定义了一个weekday的工具。

import calendar
import dateutil.parser as parser
from datetime import date
from langchain.tools import Tool, tool
# 自定义工具
@tool("weekday")
def weekday(date_str: str) -> str:
    """Convert date to weekday name"""
    d = parser.parse(date_str)
    return calendar.day_name[d.weekday()]
tools += [weekday] ## 将自定义的tool添加到tools数组中

1.2 Prompt模板

要想写好Agent,Prompt模板也不可或缺。LangChain提供了一些Prompt模板,可以直接下载修改使用。再也不用绞尽脑汁自己从零开始写Prompt了!

先安装下Python包:

pip install langchainhub

执行以下代码:

from langchain import hub
import json
# 下载一个现有的 Prompt 模板
prompt = hub.pull("hwchase17/react")
print(prompt.template)

获得Prompt模板内容(我觉得比90%的人自己写的要好):

当然,这类Prompt模板可能不完全符合你的需求,所以你需要在此基础上作一些补充或修改。但是,总比自己从零开始写要好得多。

如果要修改,可以参考我下面的方式,主要注意点是prompt应该是一个PromptTemplate类型,而不是一个字符串

# from langchain import hub
# import json
# # 下载一个现有的 Prompt 模板
# prompt = hub.pull("hwchase17/react")
# print(prompt.template)
from langchain_core.prompts import ChatPromptTemplate
prompt_template = """
Answer the following questions as best you can. You have access to the following tools:
{tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action,如果其中有日期,请确保只输入日期,格式为:YYYY-MM-DD,不要有任何其它字符
Observation: the result of the action,如果其中有日期,请确保输出的日期格式为:YYYY-MM-DD,不要有任何其它字符
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin! Let's think step by step. Take a deep breath.
Question: {input}
Thought:{agent_scratchpad}
"""
prompt = ChatPromptTemplate.from_template(prompt_template)

1.3 创建Agent

准备好llm、tools、prompt之后,创建Agent

from langchain.agents import create_react_agent
agent = create_react_agent(llm, tools, prompt)

可能会报错:ImportError: cannot import name ‘create_react_agent’ from ‘langchain.agents’,解决方法:

pip install langchain --upgrade

1.4 创建Agent执行器

from langchain.agents import AgentExecutor
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
  • 不理解:为什么在创建Agent时传入了tools,这里创建Agent执行器还要再传入一遍tools?难道为多Agent区分各自tools ?

1.5 运行Agent

agent_executor.invoke({"input": "周杰伦生日那天是星期几"})

1.6 运行结果及遇到的坑

运行结果如下:

遇到的坑:

(1)无法识别出第一步应该先检索当前日期,直接就调用了weekday工具

  • 解决办法:优化Promot,加入了 “Let’s think step by step. Take a deep breath.”

不得不说,这两句是真好使

(2)weekday工具的输入不符合要求

  • 解决办法:优化Prompt,限制输入和输出的日期类型,见上文完整的Prompt

目前大模型规划的能力还是不行。以上例子中Agent主要是依靠大模型来进行流程控制,具有很大的不确定性和不可控性。

2. 补充知识

2.1 AgentTypes

LangChain的Agent模块封装了多种Agent类型可供使用。详细可参考:https://python.langchain.com/docs/modules/agents/agent_types/

Agent Type 预期模型类型 支持聊天历史记录 支持多输入工具 支持并行函数调用 需要的模型参数 何时使用
OpenAI Tools 聊天 工具 如果您正在使用最新的 OpenAI 模型(从 1106 开始)
OpenAI Functions 聊天 函数 如果您正在使用一个 OpenAI 模型,或者一个已经针对函数调用进行了微调并且公开了与 OpenAI 相同函数参数的开源模型
XML LLM 如果您正在使用 Anthropic 模型,或其他擅长处理 XML 的模型
Structured Chat 聊天 如果您需要支持具有多个输入工具的场景
JSON Chat 聊天 如果您正在使用擅长处理 JSON 的模型
ReAct LLM 如果您使用的是简单模型
Self Ask With Search LLM 如果您使用的是简单模型,并且只有一个搜索工具

2.2 各AgentTypes的Prompt模板

  • OpenAI functions
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/openai-functions-agent")
  • OpenAI tools
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/openai-tools-agent")
  • XML Agent
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/xml-agent-convo")
  • JSON Chat Agent
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/react-chat-json")
  • Structured chat
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/structured-chat-agent")
  • ReAct
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/react")
  • Self-ask with search
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/self-ask-with-search")

本文就到这里了。咱们对LangChain的Agent模块有了一个初步的认识,并且学会了如何利用LangChain实现一个简单的Agent,如何自定义自己的tool等。

当然,Agent不止于此,LangChain的Agent模块也不止于此,还需要更加细致的学习和挖掘。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张
  • 欢迎 点赞 + 关注 👏,促使我持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏
  • 踩坑不易,感谢关注和围观

本站文章一览:

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
2月前
|
机器学习/深度学习 人工智能 人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
372 121
|
2月前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
1198 16
构建AI智能体:一、初识AI大模型与API调用
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
1340 62
AI经营|多Agent择优生成商品标题
|
12月前
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
1187 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
639 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
12月前
|
机器学习/深度学习 人工智能 算法
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
Meta Motivo 是 Meta 公司推出的 AI 模型,旨在控制数字智能体的全身动作,提升元宇宙体验的真实性。该模型通过无监督强化学习算法,能够实现零样本学习、行为模仿与生成、多任务泛化等功能,适用于机器人控制、虚拟助手、游戏角色动画等多个应用场景。
334 4
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
|
人工智能 自然语言处理 JavaScript
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
Agent-E 是一个基于 AutoGen 代理框架构建的智能自动化系统,专注于浏览器内的自动化操作。它能够执行多种复杂任务,如填写表单、搜索和排序电商产品、定位网页内容等,从而提高在线效率,减少重复劳动。本文将详细介绍 Agent-E 的功能、技术原理以及如何运行该系统。
959 5
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
|
人工智能 自然语言处理 数据挖掘
田渊栋团队新作祭出Agent-as-a-Judge!AI智能体自我审判,成本暴跌97%
田渊栋团队提出Agent-as-a-Judge框架,利用智能体自身评估其他智能体的性能,不仅关注最终结果,还能提供中间反馈,更全面准确地反映智能体的真实能力。该框架在DevAI基准测试中表现出色,成本效益显著,为智能体的自我改进提供了有力支持。
351 7
|
人工智能 自然语言处理 搜索推荐
🤖【多Agent大爆炸】——灵活调用与实践指南,解锁AI协作新技能!
本文深入探讨了单Agent与多Agent在不同场景下的应用及优势,通过实例讲解多Agent如何实现高效协作,涵盖智能物流、教育、医疗等多个领域的实际应用,旨在帮助开发者掌握多Agent系统的调用与实践技巧。
1146 5

热门文章

最新文章