r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现-1

简介: r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

原文链接:http://tecdat.cn/?p=3795

Glmnet是一个通过惩罚最大似然关系拟合广义线性模型的软件包。正则化路径是针对正则化参数λ的值网格处的lasso或Elastic Net(弹性网络)惩罚值计算的。该算法非常快,并且可以利用输入矩阵中的稀疏性 x。它适合线性,逻辑和多项式,泊松和Cox回归模型。可以从拟合模型中做出各种预测。


它也可以拟合多元线性回归。

glmnet 解决以下问题

image.png

在覆盖整个范围的λ值网格上。这里l(y,η)是观察i的负对数似然贡献;例如对于高斯分布是 image.png 。 _弹性网络_惩罚由α控制,LASSO(α= 1,默认),Ridge(α= 0)。调整参数λ控制惩罚的总强度。

众所周知,岭惩罚使相关预测因子的系数彼此缩小,而套索倾向于选择其中一个而丢弃其他预测因子。_弹性网络_则将这两者混合在一起。

glmnet 算法使用循环坐标下降法,该方法在每个参数固定不变的情况下连续优化目标函数,并反复循环直到收敛,我们的算法可以非常快速地计算求解路径。

代码可以处理稀疏的输入矩阵格式,以及系数的范围约束,还包括用于预测和绘图的方法,以及执行K折交叉验证的功能。

快速开始

首先,我们加载 glmnet 包:

library(glmnet)

包中使用的默认模型是高斯线性模型或“最小二乘”。我们加载一组预先创建的数据以进行说明。用户可以加载自己的数据,也可以使用工作空间中保存的数据。

该命令 从此保存的R数据中加载输入矩阵 x 和因向量 y

我们拟合模型 glmnet

fit = glmnet(x, y)

可以通过执行plot 函数来可视化系数 :

plot(fit)

image.png

每条曲线对应一个变量。它显示了当λ变化时,其系数相对于整个系数向量的ℓ1范数的路径。上方的轴表示当前λ处非零系数的数量,这是套索的有效自由度(_df_)。用户可能还希望对曲线进行注释。这可以通过label = TRUE 在plot命令中进行设置来完成 。


glmnet 如果我们只是输入对象名称或使用print 函数,则会显示每个步骤的路径 摘要 :

print(fit)
## 
## Call:  glmnet(x = x, y = y) 
## 
##       Df   %Dev  Lambda
##  \[1,\]  0 0.0000 1.63000
##  \[2,\]  2 0.0553 1.49000
##  \[3,\]  2 0.1460 1.35000
##  \[4,\]  2 0.2210 1.23000
##  \[5,\]  2 0.2840 1.12000
##  \[6,\]  2 0.3350 1.02000
##  \[7,\]  4 0.3900 0.93300
##  \[8,\]  5 0.4560 0.85000
##  \[9,\]  5 0.5150 0.77500
## \[10,\]  6 0.5740 0.70600
## \[11,\]  6 0.6260 0.64300
## \[12,\]  6 0.6690 0.58600
## \[13,\]  6 0.7050 0.53400
## \[14,\]  6 0.7340 0.48700
## \[15,\]  7 0.7620 0.44300
## \[16,\]  7 0.7860 0.40400
## \[17,\]  7 0.8050 0.36800
## \[18,\]  7 0.8220 0.33500
## \[19,\]  7 0.8350 0.30600
## \[20,\]  7 0.8460 0.27800

它从左到右显示了非零系数的数量(Df),解释的(零)偏差百分比(%dev)和λ(Lambda)的值。

我们可以在序列范围内获得一个或多个λ处的实际系数:

coef(fit,s=0.1)
## 21 x 1 sparse Matrix of class "dgCMatrix"
##                     1
## (Intercept)  0.150928
## V1           1.320597
## V2           .       
## V3           0.675110
## V4           .       
## V5          -0.817412
## V6           0.521437
## V7           0.004829
## V8           0.319416
## V9           .       
## V10          .       
## V11          0.142499
## V12          .       
## V13          .       
## V14         -1.059979
## V15          .       
## V16          .       
## V17          .       
## V18          .       
## V19          .       
## V20         -1.021874

还可以使用新的输入数据在特定的λ处进行预测:

predict(fit,newx=nx,s=c(0.1,0.05))
##             1       2
##  \[1,\]  4.4641  4.7001
##  \[2,\]  1.7509  1.8513
##  \[3,\]  4.5207  4.6512
##  \[4,\] -0.6184 -0.6764
##  \[5,\]  1.7302  1.8451
##  \[6,\]  0.3565  0.3512
##  \[7,\]  0.2881  0.2662
##  \[8,\]  2.7776  2.8209
##  \[9,\] -3.7016 -3.7773
## \[10,\]  1.1546  1.1067

该函数 glmnet 返回一系列模型供用户选择。交叉验证可能是该任务最简单,使用最广泛的方法。

cv.glmnet 是交叉验证的主要函数。

cv.glmnet 返回一个 cv.glmnet 对象,此处为“ cvfit”,其中包含交叉验证拟合的所有成分的列表。

我们可以绘制对象。

image.png

它包括交叉验证曲线(红色虚线)和沿λ序列的上下标准偏差曲线(误差线)。垂直虚线表示两个选定的λ。

我们可以查看所选的λ和相应的系数。例如,

cvfit$lambda.min
## \[1\] 0.08307

lambda.min 是给出最小平均交叉验证误差的λ值。保存的另一个λ是 lambda.1se,它给出了的模型,使得误差在最小值的一个标准误差以内。我们只需要更换 lambda.minlambda.1se 以上。

coef(cvfit, s = "lambda.min")
## 21 x 1 sparse Matrix of class "dgCMatrix"
##                    1
## (Intercept)  0.14936
## V1           1.32975
## V2           .      
## V3           0.69096
## V4           .      
## V5          -0.83123
## V6           0.53670
## V7           0.02005
## V8           0.33194
## V9           .      
## V10          .      
## V11          0.16239
## V12          .      
## V13          .      
## V14         -1.07081
## V15          .      
## V16          .      
## V17          .      
## V18          .      
## V19          .      
## V20         -1.04341

注意,系数以稀疏矩阵格式表示。原因是沿着正则化路径的解通常是稀疏的,因此使用稀疏格式在时间和空间上更为有效。

可以根据拟合的cv.glmnet 对象进行预测 。让我们看一个示例。

##            1
## \[1,\] -1.3647
## \[2,\]  2.5686
## \[3,\]  0.5706
## \[4,\]  1.9682
## \[5,\]  1.4964

newx 与新的输入矩阵 s相同,如前所述,是预测的λ值。


r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现-2

image.png

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现-2

https://developer.aliyun.com/article/1489395

相关文章
|
5天前
|
网络协议 Unix Linux
精选2款C#/.NET开源且功能强大的网络通信框架
精选2款C#/.NET开源且功能强大的网络通信框架
|
5天前
|
网络协议 网络安全 Apache
一个整合性、功能丰富的.NET网络通信框架
一个整合性、功能丰富的.NET网络通信框架
|
2月前
|
网络架构
.NET 网络唤醒
【9月更文挑战第5天】在网络管理中,.NET 可以实现 Wake-on-LAN,即通过发送特定数据包(魔术包)唤醒睡眠或关机状态的计算机。首先需引入命名空间(System.Net, System.Net.Sockets),然后编写 WakeUpComputer 方法,构造并发送含有目标计算机 MAC 地址的魔术包,最后调用此方法即可。使用前,请确认目标计算机及网络设备支持此功能。
39 12
|
5月前
|
网络协议 Java 程序员
TCP/IP协议栈是网络通信基础,Java的`java.net`包提供工具,使开发者能利用TCP/IP创建网络应用
【6月更文挑战第23天】 **TCP/IP协议栈是网络通信基础,它包含应用层(HTTP, FTP等)、传输层(TCP, UDP)、网络层(IP)、数据链路层(帧, MAC地址)和物理层(硬件信号)。Java的`java.net`包提供工具,使开发者能利用TCP/IP创建网络应用,如Socket和ServerSocket用于客户端和服务器通信。**
54 3
|
6月前
|
机器学习/深度学习 数据挖掘 计算机视觉
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
|
6月前
|
机器学习/深度学习 数据可视化 算法
R语言神经网络与决策树的银行顾客信用评估模型对比可视化研究
R语言神经网络与决策树的银行顾客信用评估模型对比可视化研究
|
6月前
|
机器学习/深度学习 监控 数据可视化
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例2
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例
|
6月前
|
JSON API 定位技术
.NET集成DeveloperSharp实现http网络请求&与其它工具的比较
该内容介绍了一个支持.NET Core 2.0及以上和.NET Framework 4.0及以上的HTTP请求调用方法,主要讨论了POST和GET两种形式。POST请求较为常见,涉及调用地址、发送参数、HTTP请求头和编码格式设置。文中提供了一个使用DeveloperSharp库发送POST请求的C#代码示例,用于发送短信,其中`IU.HttpPost`方法用于执行POST请求。此外,还提到了`HttpPost`方法的参数和返回值说明。最后简要提及了GET请求,通常用于URL带有查询参数的情况,并给出一个简单的GET请求示例。
|
6月前
|
机器学习/深度学习 数据可视化 算法
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例1
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例
|
6月前
|
机器学习/深度学习 数据可视化
R语言lasso协变量改进Logistic逻辑回归对特发性黄斑前膜因素交叉验证可视化分析
R语言lasso协变量改进Logistic逻辑回归对特发性黄斑前膜因素交叉验证可视化分析