分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法(三)

简介: 分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法

分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法(二)https://developer.aliyun.com/article/1485946


当然,我们可以利用一个过滤器,从总体时间序列变量中去除一些不需要的成分。为此,我们可以应用上下限相对较窄的Christiano-Fitzgerald滤波器。此后,我们使用应用于与周期有关的信息的周期图,来调查它是否成功地剔除了一些频率成分。

cf(y0)
gram(cycle)

这个结果将表明,滤波器已经排除了大部分的高频率成分。为了看看这个周期与之前的数据有什么关系,我们把通过滤波器的周期性信息绘制在分量上。此外,我们还将这个结果绘制在综合周期的变量上。

plot(x1, type = "l", lty = 1)
lines(cycle, lty = 3, lwd = 3)
plot(y, type = "l", lty = 1)
lines(cycle, lty = 3, lwd = 3)

在这两种情况下,它似乎都对过程中的趋势做了合理的描述。

南非商业周期的谱分解法

为了考虑如何在实践中使用这些频谱分解,我们现在可以考虑将这些技术应用于南非商业周期的各种特征中。

下一步将是运行所有的过滤器,这些过滤器被应用于识别南非商业周期的不同方法。

现在,让我们对商业周期的每一个标准应用一个周期图。

线性滤波器提供了一个很差的结果,因为趋势明显占主导地位(这不是周期应该有的)。这与Hodrick-Prescott滤波器的特征形成对比,后者的趋势信息已经被去除。Baxter & King和Christiano & Fitzgerald的带通滤波器也是这种情况。在这两种情况下,噪声也已经被去除。最后的结果与Beveridge-Nelson分解有关,我们注意到周期包括大量的趋势和大量的噪声。

小波分解

为了提供一个小波分解的例子,我们将把该方法应用于南非通货膨胀的数据。这将允许使用在这个过程中推导出对趋势的另一种衡量方法,这可以被认为是代表核心通货膨胀。请注意,这种技术可以应用于任何阶数的单整数据,所以我们不需要首先考虑变量的单整阶数。

然后,我们将利用消费者价格指数的月度数据,该数据包含在SARB的季度公告中。数据可以追溯到2002年。为了计算通货膨胀的同比指标,我们使用diff和lag命令。

diff/cpi\[-1 * (length - 11):length\]

为了确保所有这些变量的转换都已正确进行,我们对数据进行绘图。

plot(inf.yoy)

由于我们在这种情况下主要对识别平滑的趋势感兴趣,我们将使用贝希斯函数。这样的函数是Daubechies 4小波,它应用修正的离散小波变换方法。此外,我们还将使用三个母小波来处理各自的高频成分。

wt(yoy, "d4")

然后我们可以为每个独立的频率成分绘制结果,如下所示。

plot.ts(yoy)
for (i in 1:4) plot.ts(d4\[\[i\]\]



分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法(四)https://developer.aliyun.com/article/1485950

相关文章
|
数据可视化
绘制热图时看不出颜色差异?四种方式转换处理使结果显而“易”见
绘制热图时看不出颜色差异?四种方式转换处理使结果显而“易”见
20864 2
|
12月前
|
监控 数据可视化 安全
Zabbix 主要功能特点
Zabbix 主要功能特点
510 8
|
机器学习/深度学习 数据采集 算法
时间序列结构变化分析:Python实现时间序列变化点检测
在时间序列分析和预测中,准确检测结构变化至关重要。新出现的分布模式往往会导致历史数据失去代表性,进而影响基于这些数据训练的模型的有效性。
1481 1
|
12月前
|
人工智能 安全 算法
CAMEL AI 上海黑客松重磅来袭!快来尝试搭建你的第一个多智能体系统吧!
掌握多智能体系统,🐫 CAMEL-AI Workshop & 黑客马拉松即将启航!
314 4
CAMEL AI 上海黑客松重磅来袭!快来尝试搭建你的第一个多智能体系统吧!
|
存储 搜索推荐 数据建模
Elasticsearch 的数据建模与索引设计
【9月更文第3天】Elasticsearch 是一个基于 Lucene 的搜索引擎,广泛应用于全文检索、数据分析等领域。为了确保 Elasticsearch 的高效运行,合理的数据建模和索引设计至关重要。本文将探讨如何为不同的应用场景设计高效的索引结构,并分享一些数据建模的最佳实践。
536 2
|
安全 BI
ERP系统的培训与用户支持:确保系统高效使用与用户满意度
【7月更文挑战第29天】 ERP系统的培训与用户支持:确保系统高效使用与用户满意度
913 0
|
机器学习/深度学习 编解码 边缘计算
深度学习在图像处理中的应用与展望##
本文旨在探讨深度学习技术在图像处理领域的应用及其未来发展趋势。通过分析卷积神经网络(CNN)等关键技术,展示了深度学习如何提升图像识别、分类和生成等任务的性能。同时,本文也讨论了当前面临的挑战和未来的研究方向,为相关领域的研究和实践提供参考。 ##
|
传感器 运维 监控
C300系列CC-PCNT02 M0200705321霍尼韦尔控制器模块
霍尼韦尔C300系列CC-PCNT02控制器模块,型号M0200705321,是C300 CCPCNT01的完全兼容替代品,具备升级至更大内存的能力。该模块专为工业环境设计,具有高测量精度、便于使用、支持热插拔等特点,适用于远程监控和报警系统。符合IP54标准,确保防尘防水性能。提供详细的故障排除指南,包括传感器、通信、电源及软件故障处理方法,确保设备稳定运行。
206 3
|
安全 Java Maven
SpringBoot如何防止反编译?proguard+xjar 完美搞定
【8月更文挑战第10天】在软件开发过程中,保护源代码不被反编译是确保应用安全性的重要一环。对于使用Spring Boot框架的项目来说,防止反编译尤为重要。本文将详细介绍如何使用ProGuard和xjar这两种工具来增强Spring Boot项目的安全性,防止代码被恶意反编译。
2389 8
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法(四)
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法