分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法(一)

简介: 分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法

分解南非GDP数据

本文包含各种过滤器,可用于分解南非GDP的方法。我们做的第一件事是清除当前环境中的所有变量。这可以通过以下命令进行。

rm(list = ls())
graphics.off()

载入数据

如前所述,南非的GDP数据将其作为时间序列存储在gdp中,我们执行以下命令。

gdp <- ts(dat.tmp, start = c(1960, 2), frequency = 4)

为了确保这些计算和提取的结果是正确的,我们检查一下数据的图表。

plot(gdp)

线性滤波器_去除数据线性趋势_

为了估计一个线性趋势,我们可以利用一个包括时间趋势和常数的线性回归模型。为了估计这样一个模型,我们使用lm命令,如下。

lin.mod$fitted.values  # 拟合值与时间趋势有关
ts(lin.trend, start = c(1960, 1))  # 为趋势创建一个时间序列变量
gdp - linear  # 周期是数据和线性趋势之间的差异

回归的拟合值包含与线性趋势有关的信息。这些信息需要从模型对象lin.mod中提取,在上面的块中,我们将这些值分配给时间序列对象linear。然后从数据中剔除趋势,就得到了周期。

然后我们可以借助下面的命令来绘制这个结果,其中趋势和周期被绘制在不同的数字上。

plot.ts(gdp, ylab = "")  
lines(linear, col = "red")  
legend("topleft", legend = c("data", "trend")

霍德里克 - 普雷斯科特 (Hodrick-Prescott,HP) _滤波器_对数据进行去趋势处理

要用流行的HP滤波法分解这个数据。在这种情况下,我们将lambda的值设置为1600,这也是对季度数据的建议。

hp(gdp, freq = 1600)
plot.ts(gdp, ylab = "")  # 绘制时间序列
plot.ts(hp.decom$cycle, ylab = "")  # 绘制周期图

这似乎更准确地反映了我们对南非经济表现的理解。


01

02

03

04




用Baxter-King滤波器去趋势数据

为了利用Baxter-King 滤波器。在这种情况下,我们需要指定周期的频带,其上限被设定为32,下限被设定为6。

bk(gdp, pl = 6, pu = 32)
plot.ts(gdp, ylab = "")
plot.ts(cycle, ylab = "")

这似乎再次为南非经济活动的周期性提供了一个相当准确的表述。还要注意的是,周期的表示比以前提供的要平滑得多,因为噪音不包括在周期中。


分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法(二)https://developer.aliyun.com/article/1485946



相关文章
|
1月前
|
传感器 编解码 人工智能
中科星图——MCD43A4 V6天底双向反射率分布函数调整反射率(NBAR)数据集
中科星图——MCD43A4 V6天底双向反射率分布函数调整反射率(NBAR)数据集
118 8
|
22天前
|
机器学习/深度学习 算法 图形学
告别3D高斯Splatting算法,带神经补偿的频谱剪枝高斯场SUNDAE开源了
【5月更文挑战第26天】SUNDAE,一种结合频谱剪枝和神经补偿的高斯场方法,已开源,解决了3D高斯Splatting的内存消耗问题。SUNDAE通过建模基元间关系并剪枝不必要的元素,降低内存使用,同时用神经网络补偿质量损失。在Mip-NeRF360数据集上,SUNDAE实现26.80 PSNR和145 FPS,内存仅为104MB,优于传统算法。然而,其计算复杂性、参数优化及对其他3D表示方法的适用性仍有待改进。代码开源,期待进一步研究。[论文链接](https://arxiv.org/abs/2405.00676)
24 2
|
1月前
|
存储
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法
|
1月前
|
机器学习/深度学习 数据可视化
R语言广义加性混合模型(GAMM)分析长沙气象因子、空气污染、PM2.5浓度、显著性检验、逐日变化可视化(上)
R语言广义加性混合模型(GAMM)分析长沙气象因子、空气污染、PM2.5浓度、显著性检验、逐日变化可视化
|
1月前
|
数据可视化 数据建模
R语言广义加性混合模型(GAMM)分析长沙气象因子、空气污染、PM2.5浓度、显著性检验、逐日变化可视化(下)
R语言广义加性混合模型(GAMM)分析长沙气象因子、空气污染、PM2.5浓度、显著性检验、逐日变化可视化
|
1月前
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法(三)
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法(三)
|
1月前
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法(四)
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法
|
1月前
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法(二)
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法(二)
|
1月前
|
存储
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法1
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法1
|
1月前
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势2
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势法
分解商业周期时间序列:线性滤波器、HP滤波器、Baxter滤波器、Beveridge Nelson分解等去趋势2